
SANDIA REPORT
SAND2015-3711

Unlimited Release

Printed May 8, 2015

Counter Adversarial Data Analytics

Philip Kegelmeyer, Timothy M. Shead, Jonathan Crussell, Katie Rodhouse, Dave Robin-

son, Curtis Johnson, Dave Zage, Warren Davis, Jeremy Wendt, Justin “J.D.” Doak, Tiawna

Cayton, Richard Colbaugh, Kristin Glass, Brian Jones, Jeff Shelburg

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
TMENT OF EN

E
R

G
Y

•� •�U
N

I
T

E
D

STATES OF A
M

E
R

I
C

A

2

SAND2015-3711
Unlimited Release

Printed May 8, 2015

Counter Adversarial Data Analytics

Philip Kegelmeyer
Computer Sciences and Information Systems Center

Sandia National Laboratories
P.O. Box 969

Livermore, CA, 94551
wpk@sandia.gov

Timothy M. Shead, Jonathan Crussell, Katie Rodhouse, Dave Robinson,
Curtis Johnson, Dave Zage, Warren Davis, Jeremy Wendt,

Justin “J.D.” Doak, Tiawna Cayton, Richard Colbaugh,
Kristin Glass, Brian Jones, Jeff Shelburg

3

Abstract

This SAND report documents an LDRD effort, the “Counter Adversarial Data Analytics”
(CADA) project. CADA was designed to develop and assess data analysis techniques intended
to counter adversarial attacks against machine learning methods. Our motives for that specific
focus were two-fold:

• Sandia makes critical use of data analysis to support high-consequence national security
decisions. High-consequence issues often marked by the existence of adversaries who
actively seek to evade or subvert that analysis.

• CADA was a brief, 1.5 year project. We therefore narrowed our scope to machine learn-
ing (which is admittedly only one of the many data analysis tools used by Sandia) as
a data analytic that was specific enough to allow tractable analysis but powerful and
broadly useful enough to have important Sandia application.

In the course of the CADA project we:

• demonstrated the counter-intuitive and alarming result that there exist label tampering
attacks which are very effective while being nearly undetectable by the usual training
data cross-validation tests,

• invented and thoroughly quantitatively investigated a novel method, “Ensembles of Out-
lier Measures” (EOM), for detecting and repairing tampered data,

• demonstrated the surprisingly generality of EOM as a data science principle by success-
fully applying it to an unsupervised problem very different from the one it was designed
for, and

• developed a scheme for “quantified paranoia”, that is, a statistically principled mecha-
nism for deciding whether a dataset as a whole has been tampered with, regardless of
whether we can detect any individual bits of tampering with confidence.

4

Acknowledgments

This work was funded under LDRD Project Number 171059 and Title “Counter-Adversarial Data
Analytics”. Contributors no longer at Sandia include:

• Rich Colbaugh, Periander Ltd., rich.colbaugh@gmail.com

• Kristin Glass, Periander Ltd., kristin.glass63@gmail.com

• Brian S. Jones, Principal Research Engineer, FireEye, Inc., brian.jones@fireeye.com

• Jeff Shelburg, Google, jssdn2@mst.edu

• Yevgeniy (Eugene) Vorobeychik, Electrical Engineering and Computer Science, Vanderbilt
University, Nashville, TN, yevgeniy.vorobeychik@vanderbilt.edu

5

kristin.glass63@gmail.com
brian.jones@fireeye.com
jssdn2@mst.edu
yevgeniy.vorobeychik@vanderbilt.edu

6

Contents
1 Introduction . 9

Problem Statement . 9
Basic Terms and Background . 9
Adversary Capabilities . 10
Label Tampering as the Focus for Counter-Adversarial Data Analytics 10
A Terse Summary of Results . 11

2 Prelude: A Review of Ensembles of Decision Trees (EDT) . 13
Training Data Format . 13
Individual Trees . 14
Ensembles of Trees . 15
Avatar for EDT . 16

3 Prelude: A Description of The Data . 17

4 Label Tampering, and its Consequences . 19
4.1 The Adversarial Model . 19

Adversary Goals . 19
4.2 Confidence Attacks . 20
4.3 Confidence Attack Experiments . 21

Degradation Plots . 22
Confidence Attack Metrics . 26
Confidence Attack Analysis . 29

4.4 Evasion Attacks . 30
4.5 Evasion Attack Experiments . 30

Evasion Attack Metrics . 34
Evasion Attack Analysis . 35

5 Tamper Remediation Via Ensembles of Outlier Measures . 39
5.1 Introduction to Ensembles of Outlier Measures (EOM) . 39

Training Data for Tamper Remediation . 40
Attributes for Tamper Remediation . 40

5.2 The Current Set of Outlier Features . 40
Tamper Detection and Remediation in General . 41

6 Tamper Remediation for General Supervised Learning . 43
6.1 Matched, and Mismatched, Attack and Defense Models . 43
6.2 The Experimental Set-Up . 43
6.3 Example Experimental Results . 46
6.4 Conclusions and Next Steps . 52

7 Quantifying Paranoia for Label Tampering Attacks . 59
7.1 Introduction . 59
7.2 Background . 59

7

7.3 Model . 61
7.4 Establishing the Priors . 61
7.5 Identifying Influential Observations . 62

Conditional Predictive Ordinate . 62
Pseudo-Bayes Factors . 64
Wasserstein’s Metric (Mallows Distance): An Alternative to PBF 65

7.6 Experiments and Results . 66

8 Cluster Tampering Via Data Mines . 73
8.1 Introduction . 73

Supervised vs Unsupervised Methods in CADA . 73
Clustering, Plagiarism, Attacks, Defense: A Summary . 73

8.2 Background . 74
DBSCAN . 74
AnDarwin . 74

8.3 Related Work . 76
8.4 Threat Model . 76
8.5 Methodology . 77

Identifying Plagiarism . 77
Clustering Performance . 78
Merge Ordering Algorithms . 78
Data mine generation . 79
Removing Assumption: “Similar Sizes” . 82
Removing Assumption: “MinPts = 2” . 82
Remediation . 83
Random Remediation . 83
Outlier-based Remediation . 84

8.6 Dataset . 84
8.7 Evaluation . 85

Data Mines . 85
Clustering Degradation . 86
Inadvertent Merges . 88
Attacker and Defender Costs . 89
Remediation . 91

8.8 Discussion . 93
Attack Feasibility . 93
Merge Algorithms . 93
Suboptimal Data Mines . 94
Plagiarizing apps . 95

8.9 Future Work . 95

9 Conclusions and Future Work . 97
9.1 A Summary of Results to Date . 97
9.2 Next Steps . 97

8

Appendix

A Resources . 100
A.1 A Guide To The Source and Document Repositories . 100
A.2 Python for Avatar Configuration and Control . 101

Figures

1 A 2D Attribute Space and its Decision Tree Partitioning . 14
2 Four Parallel Examples of Bag and Tree Generation . 15
3 One random attack on the s500 dataset. 23
4 Twenty random attacks on the s500 dataset. 25
5 Twenty random defenses against the best random attack on the s500 dataset. 26
6 Confidence attack degradation plots for a representative sampling of attack algo-

rithms and datasets. 27
7 How the absolute performance degradation metric is computed. 28
8 Tamper detection accuracy for brute-clustering tampered data presumed to be ran-

domly tampered. 46
9 Tamper detection accuracy for randomly tampered data presumed to be randomly

tampered. 47
10 Classification accuracy of randomly tampered model. 48
11 Classification accuracy of subtle-clustering tampered model. 49
12 Classification accuracy of remediated model of randomly tampered data presumed

to be randomly tampered. 50
13 Change in accuracy due to remediated model n of randomly tampered data pre-

sumed to be randomly tampered. 51
14 Remediation Maximum Accuracies . 54
15 Remediation Diagonal Accuracies . 55
16 Remediation Good Accuracies . 56
17 Remediation Bad Accuracies . 57
18 Remediation Best 10+% Accuracies . 58
19 Data Flow in Log-regression . 60
20 Interpretation Scheme for Bayes Factor [?] . 65
21 CPO Histograms for Model Ma,Mb and Mc . 66
22 LogOdds Distribution for Model Parameters (35 features) . 67
23 LogOdds Distribution for Model Parameters (2 features) . 68
24 Identification of Tampered Observations (typical) . 69
25 Difference Detection: All vs All . 72

9

26 Overview of how AnDarwin represents Android apps as a set of features. First, it
extracts program dependency graphs (PDGs) from apps, such as the one shown in
the top left. It then computes a semantic vector for the graph which is a frequency
vector for the different node types within the PDG. It then clusters the semantic
vectors for all PDGs from all apps and treats each cluster of semantic vectors as a
feature. Finally, it represents each app as a set of features based on which PDGs
the app contains. 75

27 Geometry for data mines. The three-point chain shows how to generate data mines
when MinPts 3 and the five-point chain shows how to generate data mines when
MinPts = 5. 81

28 Cluster degradation plots for DS0. These show how the four clustering performance
metrics degrade as a function of the number of data mines the attacker has injected
into the dataset. From an attacker’s perspective, algorithms with less area under
the curve are better since they drop the clustering performance quicker. 87

29 Cluster degradation plots for DS1. These show how the four clustering performance
metrics degrade as a function of the number of data mines the attacker has injected
into the dataset. From an attacker’s perspective, algorithms with less area under
the curve are better since they drop the clustering performance quicker. 88

30 Inadvertent merge from the Increasing Cluster Size ordering algorithm for DS1.
The merge happened after around the 1,400th merge and was corrected when the
inadvertently merge cluster was supposed to be merged with a cluster that it was
already merged with. 89

31 The plagiarism detection accuracy with and without remediation on two partitions
of DS0. The top two plots show plagiarism detection accuracy when the adversary
merges clusters randomly, and the bottom show when she merges based on the
number of original apps in the cluster. The tampered curves show how accuracy
degrades without remediation. For the outlier remediation curve, the presumed
number of merges in the training partition matched the actual number of merges in
the testing partition. 92

32 Plagiarism detection accuracy for the various levels of presumed and actual tam-
pering for the two partition of DS0 for two different merge algorithms. 94

10

1 INTRODUCTION

1 Introduction

Problem Statement

Sandia makes critical use of data analytics in defense of national security. Our adversaries there-
fore seek to sap, even suborn, those analytics. Through understanding our methods, they seek to
produce data which is evolving, incomplete, deceptive, and otherwise custom-designed to defeat
our analysis. Further, we cannot prevent them from doing so. We live in a changed world, in which
we frequently must depend on data over which our adversaries have unprecedented influence.

This SAND report documents an LDRD effort, the “Counter Adversarial Data Analytics”
(CADA) project, that was designed to develop and assess novel data analysis methods to counter
that adversarial influence.

CADA was the inaugural activity funded by the Sandia Data Science Research Challenge pro-
cess, and thereby had dual ambitions. First, it was to do data science, discovering generalizable
and quantifiable counter-adversarial principles. Second, Sandia’s national security mission re-
quires methods that are relevant, applicable to analytics that matter, with realistic assumptions,
useful uncertainty assessments, and practical implementations. As a result, CADA focused on ma-
chine learning specifically, as a data analytic that was specific enough to allow tractable analysis
but powerful and broadly useful enough to have important Sandia application.

Basic Terms and Background

For the sake of a concrete running example of machine learning, consider an industrial inspection
problem, one that examines samples on a production line and classifies them as “good” or “bad”.
Many modern industrial processes have analytics for extracting various features from a sample
in order to predict subtle, future properties such as reliability or resistance to breaking. These
analytics often employ supervised machine learning, which examines training data, “groundtruth”
examples of good and bad samples, to generate rules for classifying future unknown samples.

For additional insight, it is often helpful to use the descriptive features to simply cluster samples
that are similar, even without a priori labeling as good or bad. This is unsupervised machine
learning.

Classic machine learning methods depend on two assumptions:

• First, that the groundtruth is indeed true, that it has not been poisoned ahead of time by
deceptive samples, or tampered with afterwards by adversarial access.

• Second, that the eventual real data is statistically similar to the training data.

Both of those assumptions are violated[?] by an adversary who is trying to undermine our spe-
cific industrial inspection process, by corrupting part of the product groundtruth or by modifying

11

1 INTRODUCTION

the “broken” samples specifically to confuse the current inspection system. We call this “label
tampering”.

Adversary Capabilities

Algorithm-aware label tampering is a usefully abstract and general problem formulation (see Sec-
tion 4.1) but arguably also unrealistic or incomplete, in that it does not address any specifics of
how an adversary might infer a defender’s algorithms, or actually tamper with the data.

True enough. For CADA’s research purposes (understanding the worst case effects of tamper-
ing, and designing counters), the precise mechanics of the attack perhaps don’t strongly matter. As
will be noted in the material to follow, most of our analyses trace out the effect of tampering across
the full range of adversarial budget, and so guessing the actual budget from operational concerns
is not required for our analysis.

Still, for some intuition into how these attacks might proceed, consider:

• An adversary wishing to infer our algorithms might start well simply by reading our pub-
lished work, thus understanding what we think we well understand.

• More generally, they might simply brainstorm how they would optimally mount a defense
themselves, then assume that the actual defenders were equally intelligent and had come to
the same conclusion.

• One path to tampering with the data is an insider threat, or perhaps even network compro-
mise. This is likely a low probability event, but there is historical precedent.

• Another path is realizing that analysis is more and more conducted on “found data”, data
taken in from the real world, and therefore it is possible to plant decoys (which we have
taken to calling “data mines”) to be collected and analyzed with naturally occuring data. We
return to this specific scenario in Section 8.

Label Tampering as the Focus for Counter-Adversarial Data Analytics

One approach to addressing label tampering is simply to increase the robustness of the learning
algorithm via methods such as regularization, minimization of worst-case loss, and compensation
for “concept drift”[?]. These approaches are not particularly adversary aware, however.

Alternatively, we can harden machine learning models by improving the quality of their training
data, specifically through detecting and addressing mislabeled “truth”. Prior to CADA, Sandia
had already demonstrated the ability to detect and correct accidentally mislabeled truth[?]. We
also started with earlier anecdotal results suggesting that adversarial attempts to systematically
mislabel data can paradoxically draw additional attention to the masked samples. The change in
labels inescapably creates a signature, a change in the statistical nature of the “feature space”, that

12

1 INTRODUCTION

may mask individual samples but which nonetheless calls attention to the whole set of samples in
that area.

In CADA we thoroughly investigated, generalized, and extended these findings. The general
approach was to ask, repeatedly, from a variety of perspectives and on a variety of data:

• What is the possible effect of label tampering? How best to measure it?

• What would an adversary’s goals be in tampering? Given those goals, what would an “opti-
mal” tampering be? Is it computationally feasible to determine the optimum tampering? Are
there useful heuristic approximations?

• Can we detect whether tampering has occurred at all? Can we detect which specific samples
have been tampered with?

A Terse Summary of Results

Over the course of the CADA project we have:

• Exhaustively investigated the impact of adversarial label tampering on supervised machine
learning, and in the process generated a durable body of re-usable Python code for future
such investigations (Section A).

• We have demonstrated the counter-intuitive and alarming result that there exist label tamper-
ing attacks which are very effective (in the sense of decreasing test set accuracy near linearly
with the number of points attacked) while being nearly undetectable by the usual training
data cross-validation tests (Figure 6 and Section 4.3).

• The effectiveness of the various attacks we invented are, of course, worrisome. So we also
invented, described (Section 5) and thoroughly quantitatively investigated (Section 6) “En-
sembles of Outlier Measures”, a method for building a meta-model for detecting tampered
data. Further, we have shown how to use EOM to remediate tampered data by detecting, and
correcting, the labels of suspect data points.

• In addition to working up a mechanism for individually detecting tampered points, we also
created a method (Section 7) for “quantified paranoia”, that is, a statistically principled
mechanism for deciding whether a dataset as a whole has been tampered with, regardless
of whether we can detect any individual bits of tampering with confidence. In tests we
demonstrated (Table 12) that our quantified paranoia test does indeed find evidence of very
limited tampering, even the tampering invisible to cross-validation, while not reacting to
statistically similar untampered data.

• Finally, we have shown that the general principles behind Ensembles of Outlier Measures
as a remediation technique are surprisingly and satisfyingly general. That is, in Section 8
we develop an entirely different sort of adversarial tampering problem, one in which an

13

1 INTRODUCTION

adversary attempts to undermine an unsupervised machine learning method called DBSCAN
by adding spurious elements to a data set. So the nature of the data, the nature of the analytic,
and the nature of the attack are all very different from the supervised machine learning work
investigated in most of CADA: yet an ensemble of outlier measures nonetheless turns out to
be an effective means of detecting and removing the attack points, returning the clustering
algorithm to its unattacked accuracy (Figures 31 and 32).

14

2 PRELUDE: A REVIEW OF ENSEMBLES OF DECISION TREES (EDT)

2 Prelude: A Review of Ensembles of Decision Trees (EDT)

Ensembles [?], and in particular ensembles of decision trees (EDT) [?], are a robust, reliably
near-optimal method for practical, robust, accurate supervised machine learning[?]. They also
effectively lower design stress in building a machine learning model, as they have the attractive
property that they are unaffected by junk features and are invariant to monotonic transformation
of the feature axes. Practically, this means there is no need to attempt to normalize features, to
determine what their respective weight should be relative to each other: the decision tree ensemble
can work this out on its own.

As a result, EDTs are very popular and widely used. We accordingly focused on EDTs as the
primary supervised machine learning method investigated in CADA. We therefore begin with a
review of the core nature of machine learning data, decision trees, and decision tree ensembles.

Training Data Format

DEFECT ID Defect? CGINTX CGINTY SNR . . . PMIN
Truth a1 a2 a3 . . . aK

d1 Yes 12 1003 0.97 . . . 0.12
d2 Yes 99 2 0.33 . . . 0.03
d3 No 3 27 0.12 . . . 0.13
d4 Yes 16 183 0.08 . . . 0.58
d5 No 17 665 0.36 . . . 0.64
d6 No 44 1212 0.29 . . . 0.42
d7 No 42 24 0.33 . . . 0.88
d8 Yes 78 42 0.44 . . . 0.52
...

...
...

...
...

...
dN No 12 3141 0.92 . . . 0.17

Table 1: Example Training Data, with Labels and Features

First, consider Table 1 (drawn from the NIF data described in Section 3), which illustrates the
standard structure of training data suitable for supervised machine learning. Each row, each di,
represents a single potential optical defect. The columns a1 through aK represent the K features
that have been extracted to describe di. And since this is training data, data which has already been
investigated and is understood, there is also a “Truth” column, indicating whether di is, or is not, a
defect.

The core assumption behind supervised machine learning is that there is some function in the
real world, f (a1, . . . ,ak), that operates on the features to generate the labels, and the role of the
machine learning algorithm is to generate an approximation of that function.

(A less frequently examined assumption is that the “Truth” labels are indeed true. Most of the
rest of this report involves investigating the consequences of the violation of that assumption.)

15

2 PRELUDE: A REVIEW OF ENSEMBLES OF DECISION TREES (EDT)

Individual Trees

To understand how a single decision tree is built, take the geometric view of imagining each data
point as existing in an N-dimensional space, where N is the number of attributes. (This is not
strictly true if some of the attributes are not numerical, but the assumption suffices for this expla-
nation.) Figure 1a illustrates a very simple case, with only two features (x and y), only 12 data

I
I

I

I

I

I
I

I

I

I

I

R

R

R

R

I
First

Second

Third

0.0
0.0

5.0

5.0

10.0

(a) Attribute space partitioned

y < 3.5?

x < 2.8?

y < 1.5?

Yes

Yes

Yes

No

No

No

(More Splits)

(b) Decision tree representation

Figure 1: A 2D Attribute Space and its Decision Tree Partitioning

points, and two classes, Blue I and Red R. What the decision tree algorithm does is figure the
best way to incrementally partition the feature space, giving each partition a unique label. Then to
figure out the label of a new point, you figure out which partition it fell into, and look up its label.
Or, equivalently, you march down the decision tree representation of the partition (as in Figure 1b)
and look up the label associated with the leaf node of the tree.

To determine the optimal partitioning of the data, the tree algorithm defines an objective func-
tion (generally called a “purity” function) that measures how much more thoroughly the classes are
separated in the children of any proposed split. Then it considers all possible splits, and picks the
one which maximizes the objective function. Then the decision tree process recurses, and applies
itself separately to whatever mixed class children remain, to figure out their best partition, and so
on.

16

2 PRELUDE: A REVIEW OF ENSEMBLES OF DECISION TREES (EDT)

Ensembles of Trees

That’s the process for building a single batch decision tree. There are many methods for building
ensembles of classifiers. They can all be well enough illustrated by considering the “bagging”
method, which is indeed the default ensemble method used in CADA.

The core idea behind ensembles via bagging is to generate many variants of a data set from an
original baseline data set. Each variant is used to train a single machine learning model, and since
each model is based on slightly varying data, the models will vary as well. Figure 2 illustrates the

1

3

0

9

2

4

5

6

7

8

1

3

0

9

2

4

5

6

7

8

1

3

1

8

2

3

6

6

7

8

1

3

1

9

2

5

5

5

7

9

1

3

1

8

3

3

5

7

8

8

1

3

0

8

1

3

6

6

6

8

1

3

0

9

2

4

5

6

7

8

1

3

0

9

2

4

5

6

7

8

Vote

Sampling with replacement

All Sampled All SampledAll SampledAll Sampled

Figure 2: Four Parallel Examples of Bag and Tree Generation

core idea for a toy example which has only 10 training data points, labeled 0–9. Each of the four
bagging examples depict picking randomly from those ten data points, with replacement, until ten
points have been picked. Since the selection is done with replacement, any one data point might
be picked more than once. And since a data point can be picked more than once, but the resultant
data set is the same size, some points will be omitted. The result is a skewed, variant version of the
original data. As an example, in Figure 2, the first bag has selected multiple copies of data points
5 and 9, but has omitted data points 4 and 6.

The point of ensemble methods is that simple majority voting of the resulting variant machine
learning models is, nearly inevitably, more accurate than consulting a single model learned from

17

2 PRELUDE: A REVIEW OF ENSEMBLES OF DECISION TREES (EDT)

the unmodified data[?].

Avatar for EDT

The specific EDT implementation we used in CADA is “Avatar”, a set of tools developed over
earlier Sandia projects. The Avatar Tools embody all the algorithms and practices that have been
gleaned from a decade’s research into how to best make supervised machine learning work with
huge, messy, noisy, unbalanced data.

Features that distinguish Avatar Tools from other “ensembles for decision trees” codes include:

• Native implementation of out of bag (OOB) validation, in addition to standard non-ensemble
methods for cross-validation such as 10-fold and 5x2 validation.

• The use of OOB validation to automatically determine optimal ensemble size.

• Implementation of a wide range of skew-correction mechanisms, SMOTE[?] in particular.

• Implementation of a wide range of performance metrics.

• A post-processing analysis tool, “tree stats”, which provides a robust assessment of the rel-
ative importance of the features[?] used to build the EDT model. These assessments play a
role in our investigation of remediation methods in Section 5.

18

3 PRELUDE: A DESCRIPTION OF THE DATA

3 Prelude: A Description of The Data

As mentioned, the intent of the CADA project was to arrive at general counter-adversarial princi-
ples, as pertains to machine learning. In particular, our aim was to avoid results that would be tied
to the specific nature of the data under analysis.

Thus the larger context, the application details, of the data sets we used for research and test
are not critical. Still, again for the sake of double checking that our results were indeed general, we
acquired and operated on a variety of data sets from four application domains. Here we describe
the four data sets we use in our supervised machine learning investigations, and give them the short
name used to refer to them elsewhere in this report.

ideology: Earlier Sandia work[?] investigated whether documents could be classified as ideolog-
ical through text analysis and machine learning. Each document was converted to a bag of
words, and the resulting term-document vectors were reduced via PARAFAC2 tensor decom-
position to convert each document to a vector of 200 continuous features, in a fashion similar
to other term decomposition models such as Latent Semantic Analysis or Latent Dirichlet
Allocation.

The “ideology” training data set contains 262 such vectors, labeled “Ideology” or “None” in
half/half proportions. There is a matching test set of 262 vectors, again half/half, all distinct
from the training set.

nif: The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a high-
energy laser facility comprised of 192 beamlines that house thousands of optics. The optics
guide, amplify and tightly focus light onto a tiny target for fusion ignition research and
high energy density physics experiments. The condition of those optics is critical to the
economic, efficient and maximally energetic performance of the laser, but the number of
optics and the required laser duty cycle means that human inspection of each optic after
each laser shot is impossible. Reliable automated inspection is required, and so the NIF
Optics Inspection (OI) project has accordingly developed sophisticated image analysis for
the detection and description of potential defects on the optics[?]. These descriptions are in
turn used as features fed to a machine learning model which identifies their nature.

We acquired such feature sets from the NIF OI project for analysis in CADA. They are
usefully distinct in nature from the “ideology” data in that the twenty-eight features are
a mix of categorical and continuous features, the continuous features are not necessarily
commensurable in scale, and there are more than two classes of object.

Specifically, the “nif” training data consists of 300 such feature vectors, labeled “Not a defect”,
“Defect”, or “Camera defect” in third/third/third proportions. There is a matching test set of
300 vectors, again third/third/third, all distinct from the training set.

s500,b1000: The “ideology” and “nif” data sets are relatively modest in size, and though directly
addressing scale issues was not a primary part of CADA’s intent, we at least wanted to
develop a sense of whether scale would prove a challenge in subsequent work.

19

3 PRELUDE: A DESCRIPTION OF THE DATA

We therefore also investigated data from a product inspection application. The “s500” train-
ing data consists of 500 vectors of twenty continuous features reflecting one way to inspect
the underlying product. The “b1000” training data doubles that size, and consists of 1000
vectors of fifty continuous features reflecting a variant approach to characterizing the same
products.

In both cases the labels were half/half “bad”/“good”, and in both cases we created separate
test data sets, of the same size and with the same half/half split in labels.

Finally, as described in detail in Section 8, we also investigated the attack and remediation
of an unsupervised machine learning algorithm used to find plagiarized Android apps; it’s data is
described in Section 8.6.

20

4 LABEL TAMPERING, AND ITS CONSEQUENCES

4 Label Tampering, and its Consequences

4.1 The Adversarial Model

Adversary Goals

Over the course of this project, we modeled two distinct types of adversarial attack, which we
term “confidence” and “evasion” attacks. They differ only in their goals; they both operate in the
exact same fashion, which is to change some subset of the truth labels in a training data set before
the supervised machine learning method can learn from it. With reference to Table 2, an attack
is simply selecting a subset of (d1, . . . ,dn) and flipping the label in the “Defect?” column to the
opposite value.

DEFECT ID Defect? CGINTX CGINTY SNR . . . PMIN
Truth a1 a2 a3 . . . aK

d1 Yes 12 1003 0.97 . . . 0.12
d2 Yes 99 2 0.33 . . . 0.03
d3 No 3 27 0.12 . . . 0.13
d4 Yes 16 183 0.08 . . . 0.58
d5 No 17 665 0.36 . . . 0.64
d6 No 44 1212 0.29 . . . 0.42
d7 No 42 24 0.33 . . . 0.88
d8 Yes 78 42 0.44 . . . 0.52
...

...
...

...
...

...
dN No 12 3141 0.92 . . . 0.17

Table 2: Example Training Data, with Labels and Features

For a confidence attack, we assume the adversary seeks to reduce a defender’s confidence in the
efficacy of their machine learning models and algorithms, causing the defender to expend resources
troubleshooting nonexistent problems or to abandon their models outright. We posited that such
an adversary would seek to maximize the reduction in performance of a machine learning model
on test data by tampering with the training data, while minimizing their own cost, i.e. minimizing
the amount of tampering necessary to achieve a given performance reduction. In this case the
adversary is unconcerned with the (mis)classification of individual observations in the test data;
their sole purpose is to reduce the performance of the system as a whole.

Contrast this with an evasion attack[?], where we assume the adversary wishes to cause the
misclassification of a single “payload” observation in the test data[?]. In this case the adversary
is only tangentially concerned with the overall performance of the defender’s model, so long as
the payload observation is misclassified. Rather, they seek to achieve their goal with the least
likelihood of detection, i.e. by minimizing the required training data tampering and avoiding any
detectable reduction in system performance.

21

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.2 Confidence Attacks

For both cases, we model an attack by determining:

1. A set of training data observations whose labels will be flipped (tampered with).

2. An explicit order in which the observations will have their labels flipped. (The order permits
us to model an attacker’s “budget”; she might be able to attack only n out of N samples, and
so the ordering tells her which n to attack.)

3. An explicit “target” label that each tampered label will be flipped to. (In two-class problems
this is obviously always the other class; in n-class problems the attack method must have
some means of specifying which label to convert to.)

4.2 Confidence Attacks

The following outlines the confidence attack algorithms that we explored over the course of the
project, roughly ordered from least- to most-sophisticated. Each algorithm was responsible for
examining a training data set and producing an attack. For purposes of experimentation and insight,
the attack algorithms were written to tamper with every observation in the test data. We will see in
Section 4.3 that tampering with every observation is neither needed nor desirable in practice.

Random (random): The Random attack simply flips training observation labels in random order,
providing a lowest-common-denominator baseline against which the other attacks can be
compared.

Class Random (cr): For a training dataset containing L classes, the Class Random attack flips
every label that matches class L0 in random order, then every label that matches class L1 in
random order, and-so-on until every training observation label has been flipped.

Greedy Pessimal (gp): The Greedy Pessimal attack performs an iterative greedy search, flipping
the training observation label that reduces test performance the most at each iteration until
every training observation label has been flipped.

Brute Clustering (bc): For the Brute Clustering attack, the training observations are grouped into
K clusters. Then, every label in a randomly-chosen cluster is flipped in random order. The
process is repeated for the next randomly-chosen cluster, and this continues until every clus-
ter has had all its observations flipped.

Subtle Clustering (sc): First, the training observations are grouped into K clusters. In addition to
identifying the cluster that each observation belongs to, the clustering process provides the
distance from each observation to the center of its cluster. Then, the Subtle Clustering attack
flips every label in a randomly-chosen cluster, in decreasing order of label distance (i.e. the
labels that are at the periphery of their cluster are flipped before labels that are closer to the
center of the cluster). The process is repeated with another randomly-chosen cluster, until
every cluster has had all its observations flipped.

22

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.3 Confidence Attack Experiments

Heterogeneous Clustering (hc): The training observations are grouped into K clusters, and the
distance from each observation to the center of its cluster is noted. Heterogeneous Clustering
then uses a one-way chi-squared test to attack the clusters in order from the most heteroge-
neous cluster to the most homogeneous. Within each cluster, labels are flipped in order from
closest to furthest. Note that this was the opposite of the ordering of many of the other at-
tacks; the intent being to attack the most homogeneous part of the cluster first, so as to sow
confusion as quickly as possible.

Understated Clustering (uc): Understated Clustering groups training observations into K clus-
ters, and the distance from each observation to the center of its cluster is noted. The clusters
are then organized based on the percentage of labels within each cluster that match a target
label Lt , in descending order. Within each cluster, labels are flipped in order from furthest
to closest before moving to the next cluster. Here the motivation is to investigate an attack
(still in the confidence attack context) that might prove useful in evasion attacks as well. The
idea is that we first attack the clusters most populated by the label we are trying to hide, Lt ,
on the theory that those are the clusters where future Lt samples are likely to arise. Further,
we attack from the outside in in the hopes of being relatively stealthy, as we are first creating
anomalies in the region where anomalies are already relatively common.

Conditional Predictive Ordinates (cpo): A measure of the importance or influence of each ob-
servation relative to the classification of the population is provided by the Conditional Pre-
dictive Ordinate (CPO); see also Section 7.5. Attacks using the CPO strategy are based on
one of two similar heuristics; both require the observations to be ordered based on the ab-
solute magnitude of their individual CPO values. In a confidence attack, observation labels
are flipped irrespective of which class label has been assigned. Alternatively, an evasion
CPO attack involves the desire to intentionally bias the decision process associated with one
or more specific labels, and so will attack only samples with certain labels, still ordered by
absolute CPO.

4.3 Confidence Attack Experiments

Our confidence attack experiments were implemented using the Python [?] programming language.
The implementations made extensive use of the NumPy and SciPy [?] modules for scientific com-
puting. Individual experiments and results were combined in IPython [?] notebooks, and we used
the IPython parallel toolkit to run experiments in parallel on multicore hosts. All of our experi-
ments focused on the effects of confidence attacks on machine learning classifier accuracy; algo-
rithm timings and efficiency were outside the scope of the project.

Each experiment used the following process (some steps were cached to avoid wasted compu-
tation):

1. Choose a dataset. Split the dataset into training and test observations, using random sampling
without replacement.

23

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.3 Confidence Attack Experiments

2. Use statistics computed by the Avatar tree stats post-processor to identify the two most
important features in the training data. (The use of two features facilitated visualization of
how the points were relabeled by the tampering process, and is not otherwise necessary. Spot
checks using all the features did not show any fundamental differences in outcomes, though
of course this should be revisited in any future work.)

3. Cluster the observations in the training data, using normalized versions of the two features
identified in the previous step, the K-means clustering algorithm, and a heuristic for identi-
fying the best value for K.

4. Identify a target (tampered) label for each observation in the training data. For two-class
data, the tampered label for each observation obviously must be “the other class”. For data
containing n classes, we chose one of the other n�1 classes at random, with uniform prob-
ability.

5. Choose an attack algorithm from the list in the previous section. Compute attacks using the
attack algorithm and the training data (and the clustering information, for those attack algo-
rithms that required it). Most of the attack algorithms had a nondeterministic component, in
which case twenty attacks were computed for each algorithm, each using different random
seeds. A few attack algorithms were completely deterministic, in which case only one attack
was computed.

6. Each individual attack was evaluated by generating an ensemble of decision trees using
Avatar and the untampered training data, and collecting the out-of-bag accuracy on the train-
ing data and the voted and average accuracy of the ensemble on test data. This process was
repeated after incrementally tampering with each label in the training data using the order-
ing and label targets computed by the attack algorithm, until every label in the training data
had been tampered with. The resulting data can be best understood using the “degradation
plot” of Figure 3, which plots the out-of-bag, voted, and average accuracy for an attack as
the number of tampered labels increase; these degradation plots are discussed in detail in the
next section.

7. From the available attacks, a “best” attack was selected using one of the metrics described
later in this chapter.

8. The “best” attack was evaluated again, computing the same series of out-of-bag, voted, and
average accuracy metrics as the tampering increased, but with a different random seed for
the Avatar learner. This process was repeated twenty times, each time with a different Avatar
seed. The data thus collected represented a range of possible outcomes for a single attack, in
the presence of a defender using varying defenses.

Degradation Plots

A major tool for analyzing our confidence attack experiments was the “degradation plot” (Fig-
ure 3), which plots three measures of accuracy for ensembles of decision trees, as the number of
tampered labels increase. Those three measures are as follows:

24

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.3 Confidence Attack Experiments

Figure 3: One random attack on the s500 dataset.

Out-of-bag: Out-of-bag accuracy (plotted in blue) is a type of cross-validation self-assessment
available to ensembles of machine learning classifiers when each classifier is trained on a
subset (the “bag”) of the training data, and its performance is tested using the (“out-of-bag”)
remainder of the training data. As is always the case in machine learning, self-assessments
are inherently optimistic, since they can only predict how well a model might generalize to
new observations. Thus, under normal circumstances we expect the out-of-bag accuracy to
be a little bit higher than other measures of accuracy, though we also expect the size of that
gap to be relatively constant. It is important to note that we include out-of-bag accuracy in
our results despite the challenges of self-assessment because self assessment is the only kind
of assessment a defender can make in the real world!

Voted: Voted accuracy (plotted in red) is the accuracy of the ensemble as a whole, when the
predictions of the individual classifiers are combined using voting and the group predictions
are evaluated against test data. This represents the actual accuracy of the ensemble, when
applied to new observations. Normally, we expect that the voted accuracy will be a little
bit lower than the out-of-bag accuracy. Note that, because the voted accuracy can only be
computed in experiments using test data that has ground-truth labels, it is unknowable for a
defender in the real world.

25

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.3 Confidence Attack Experiments

Average: Average accuracy (plotted in black in degradation plots) is the average of the accuracy
of each of the individual classifiers within an ensemble, when evaluated against the available
test data. Thus, it serves as an approximation of the performance of a single classifier, if
the defender wasn’t using ensembles. Under normal circumstances, we expect the average
accuracy to be lower than the voted accuracy of the entire ensemble (otherwise, there would
be no point in creating ensembles). Like voted accuracy, the average accuracy cannot be
known by a defender in the real world, since test data with ground-truth labels will not be
available.

Average accuracy is a useful diagnostic for two reasons. First, it is a measure of how chal-
lenging the machine learning problem is: if voted and average accuracy are roughly equal,
then the use of ensembles is not buying you much, the problem is so simple that a single tree
suffices.

Secondly, if average accuracy is higher than voted accuracy, then this is a rare marker that
something is seriously wrong. Usually it signifies that the errors in the individual trees are
not sufficiently decorrelated, they are all making the same mistakes, which undermines the
core principle of ensembles.

Applying these ideas to the degradation plot of a random attack in Figure 3, we see that in
the absence of any tampering (at x = 0, at the far left end of the plot), out-of-bag (blue) accuracy
is higher than voted (red) accuracy, which is higher than the average accuracy (black) for the
dataset, as expected. Moving left-to-right we see that as the number of tampered training labels
increase, all three measures decrease. However, note that for the first 170 tampered labels, the
voted performance does not decrease as quickly as the average performance, indicating that the
ensemble is affected less by tampering than a single classifier. However, after 170 labels have been
altered, the ensemble performance quickly drops to 50 percent, where it is no better than a coin
toss. Even worse, note that the ensemble performance stays below the average performance for
most of the rest of the plot, i.e. that the defender in this case is paying the cost of creating and
evaluating an ensemble of classifiers, yet achieving lower performance than a single classifier!

We now turn to the out-of-bag accuracy. During the first half of the attack in Figure 3 the out-
of-bag accuracy drops quickly, even more quickly than the actual accuracy. This is ideal for the
defender, since it can act as a strong signal than an attack is underway. However, the out-of-bag
accuracy levels-out at around 60 percent until the attack reaches the halfway point, then returns
to its original, untampered accuracy by the time the attack has tampered with every label in the
training data. This highlights a danger in relying on self-assessment: as the amount of tampered
data increases beyond 50 percent, the ensemble becomes increasingly adept at learning the new
(tampered) truth; when its performance is evaluated against the same tampered truth, it gets good
scores, and the self-assessment reflects this.

Of course, Figure 3 visualizes just one among many possible random attacks. To characterize
the performance of an entire family of attacks (such as when we computed multiple attacks with
varying random seeds), we created degradation plots showing envelopes of attack performance,
as in Figure 4. The color scheme of the plot is unchanged, but now we plot the mean values of
each measure across every attack, surrounded by a dark band representing the second and third

26

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.3 Confidence Attack Experiments

Figure 4: Twenty random attacks on the s500 dataset.

quartiles, surrounded by a lighter band representing the first and fourth quartiles, bounded by the
minimum and maximum values. This gives a good sense for the distribution of values across the
different attacks, and allows us to see that the trends described previously still apply to the various
attacks. Wide areas in the bands indicate high variance in performance among attacks.

Using metrics described later, we typically chose one “best” attack from among the attacks
for a given algorithm, then tested that attack against multiple defenses, i.e. multiple random seed
parameters with the Avatar learner. This allowed us to evaluate how much the performance of a
given attack might vary in the face of unknown defender parameters. Figure 5 is a degradation
plot of a set of defenses against a single “best” random attack. Note that the variance of all three
measures is much lower than that in Figure 4, indicating that for this combination of data set
and attack algorithm, it was worthwhile for the attacker to take the time to choose a good attack
(high variance in Figure 4), and that the attack chosen is likely to achieve relatively consistent
performance even for a variety of defenses (low variance in Figure 5).

27

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.3 Confidence Attack Experiments

Figure 5: Twenty random defenses against the best random attack on the s500 dataset.

Confidence Attack Metrics

As we began to generate degradation plots for various combinations of data set and attack algorithm
(Figure 6), it became clear that there were many potentially conflicting criteria that an adversary
might use in choosing an optimal confidence attack:

Efficacy: An adversary might choose one attack over another based on its effectiveness, or how
quickly it reduced actual performance – i.e. which attack could achieve a given performance
reduction with the lowest cost (least tampering). Attacks that meet this criteria have the
steepest slopes for the voted and average curves in Figure 6.

Reliability: An adversary might instead prefer an attack that had low variance, i.e. an attack that
doesn’t reduce performance as quickly, but instead reduces performance more consistently
and predictably, regardless of the parameters used to tune the attack or the defense – thus,
the “most reliable” attack. Attacks that meet this criteria have lower variance (narrower
envelopes) in Figure 6.

Stealth: Finally, an adversary favoring stealth might choose an attack based on its impact on out-
of-bag performance. Since out-of-bag accuracy was the only performance measure available

28

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.3 Confidence Attack Experiments

Figure 6: Confidence attack degradation plots for a representative sampling of attack algorithms
and datasets.

to the defender in our experiments, an attack that didn’t affect out-of-bag accuracy, even if
it was less reliable or less effective, would be much less likely to be detected. Attacks that
meet this criteria have flat out-of-bag curves in Figure 6.

Degradation plots allowed qualitative comparisons across datasets and algorithms with these
three criteria of efficacy, reliability, and stealth in mind, but we wanted to explore more quantita-
tive alternatives. Thus we created several metrics derived from the raw accuracies, including the
following:

29

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.3 Confidence Attack Experiments

Absolute Performance Degradation (apd) To score the efficacy of an individual attack, we de-
fined Absolute Performance Degradation to be the signed area of the region bounded by the
untampered voted performance v0 and tampered voted performance vi of the attack for n
label flips:

n�1

Â
i=0

vi � v0

n could represent the attacker’s budget, or for an overall analysis, could represent the full
number of data points in the training data. Where the tampered performance is higher, the
area is positive; where the tampered performance is lower, the area is negative (Figure 7).
From the standpoint of an attacker, lower values are better.

Figure 7: How the absolute performance degradation metric is computed.

For two attacks that otherwise achieve identical performance reductions, the attack that re-
duces performance sooner and/or more quickly will achieve a better score — APD rewards
early, sustained reductions in ensemble performance, which we assume to be the primary
goal of an adversary.

Consistency (consistency) To evaluate the reliability of an attack algorithm, we defined the Con-
sistency metric as the area of the region bounded by the minimum voted performance vimin

30

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.3 Confidence Attack Experiments

and the maximum voted performance vimax across a collection of attacks for n label flips:

n�1

Â
i=0

vimax � vimin

From the standpoint of the attacker, lower values are better, indicating more consistent attack
performance for a collection of attacks (or a range of defenses).

Delta Out-of-Bag (doob) To evaluate the “stealthiness” of an attack, we define the Delta Out-of-
Bag metric for confidence attacks as the difference between the maximum and minimum
values for the out-of-bag accuaracy across an entire attack. From the attacker’s perspective
lower values are better, suggesting that an attack has a lower impact on the performance that
the defender can monitor.

We considered other metrics, and do not consider the list above to be exhaustive. In particular, we
investigated means for more strongly weighting metrics when the budget is low, the idea being to
reward attacks that are quickly effective without having to separate investigate and report the effec-
tiveness of an attack at 5% tampering, 10% tampering, etc. We did not complete this investigation
(mostly due to lack of time; more work would be fruitful here), and so do not have a metric that
captures, for instance, our qualitative judgment that CPO is one of the most effective attacks in
that it often has the sharpest initial slope. APD at the semi-arbitrary choice of 10% might capture
that fact, but overall APD does not, as CPO is no more effective at higher budgets than the other
attacks.

Confidence Attack Analysis

Those caveats in mind, Figure 6 and Tables 3, 4 and 5 summarize our metrics for a representative
subset of the confidence attack experiments that we ran. One of our first general observations was
that the results tend to be very dataset-specific, which is why the tables have been grouped by
dataset. We note:

• For all of the datasets tested, there were significant differences in APD among algorithms,
meaning that the choice of algorithm is important for an attacker wishing to reduce perfor-
mance quickly.

• Within each dataset, differences among consistency scores were so low as to be practically
nonexistent. So while an adversary may value consistency in an attack, for a given dataset
the attack algorithms we tested had little affect on consistency.

• The differences among DOOB scores for each dataset in our experiments were dramatic,
confirming that the choice of attack algorithm can dramatically affect the attacker’s likeli-
hood of detection.

31

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.4 Evasion Attacks

• For all of our two-class datasets, Greedy Pessimal (gp) had the lowest APD (reduced per-
formance the fastest). However, in all of the data sets it had the highest values of DOOB,
which means that a Greedy Pessimal attack is relatively easy to spot via cross-validation
self-assessment.

• Brute Clustering (bc) and Subtle Clustering (sc) were in the top three algorithms for APD in
three out of four datasets.

• Understated Cluster (uc), Subtle Clustering (sc), and Heterogeneous Clustering (hc) are all
top-four algorithms for DOOB in three out of four datasets.

• Therefore Subtle Clustering (sc) stands out as being both relatively effective and relatively
subtle and hard to spot via the cross-validation metric.

• The three-class nif dataset behaved differently from the other two-class datasets along all
dimensions, suggesting that modeling the correct number of classes in a dataset is a critical
consideration in choosing attacks.

4.4 Evasion Attacks

Due to time constraints we were only able to explore two types of evasion attack before the end
of the project. Like confidence attacks, evasion attack algorithms were responsible for identifying
a set of training observation labels to be flipped, an ordering, and the corresponding target labels.
However unlike confidence attacks, an evasion attack is generated for a specific test observation
that the adversary wishes to have misclassified, which we refer to as the “evader”.

Nearest Neighbor (nn): The Nearest Neighbor attack computes distances between the evader
(test observation) and every observation in the training data, using a Euclidean distance mea-
sure and a subset of features identified as statistically important. Training observation labels
are then flipped in-order based on their distance from the evader, from closest to furthest
away.

Nearest Neighbor Cohort (nnc): The Nearest Neighbor Cohort attack is computed similarly to
Nearest Neighbor, except that only training observations with the same ground truth label as
the evader (its cohort) are flipped.

4.5 Evasion Attack Experiments

Our evasion attack experiments were implemented using the same software stack as our confidence
attacks (Section 4.3), and followed a similar process:

1. Choose a dataset. Split the dataset into training and test observations, using random sampling
without replacement.

32

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.5 Evasion Attack Experiments

Experiment mean(apd) std(apd)
gp-b1000-training-2-feature -357 10.1
icpo-50-descending-b1000-training-2-feature -352 8.6
cpo-50-ascending-b1000-training-2-feature -352 8.56
random-b1000-training-2-feature -349 8.58
hc-b1000-training-2-feature -342 9.35
bc-b1000-training-2-feature -335 8.62
cr-b1000-training-2-feature -333 8.43
cpo-50-absolute-b1000-training-2-feature -327 9.9
sc-b1000-training-2-feature -324 8.82
uc-b1000-training-2-feature -320 8.68
cpo-50-descending-b1000-training-2-feature -307 9.12
icpo-50-ascending-b1000-training-2-feature -307 9.1
gp-ideology-training-2-feature -108 3.6
sc-ideology-training-2-feature -104 2.51
bc-ideology-training-2-feature -103 2.33
cr-ideology-training-2-feature -101 2.03
random-ideology-training-2-feature -97.8 2.87
cpo-50-descending-ideology-training-2-feature -95.4 2.27
icpo-50-ascending-ideology-training-2-feature -95.4 2.28
uc-ideology-training-2-feature -93.3 2.11
icpo-50-descending-ideology-training-2-feature -91.9 2.35
cpo-50-ascending-ideology-training-2-feature -91.9 2.36
hc-ideology-training-2-feature -75.2 2.63
cpo-50-absolute-ideology-training-2-feature -72.8 2.42
sc-nif-training-2-feature -120 3.15
c3po-descending-lowest-influence-flips-nif-training-2-feature -119 2.74
bc-nif-training-2-feature -118 3.01
c3po-descending-random-flips-nif-training-2-feature -115 3
gp-nif-training-2-feature -114 3.45
uc-nif-training-2-feature -107 3.26
random-nif-training-2-feature -101 3.68
c3po-ascending-lowest-influence-flips-nif-training-2-feature -98.6 2.84
hc-nif-training-2-feature -98.4 3.14
c3po-ascending-random-flips-nif-training-2-feature -97.4 3.01
gp-s500-training-2-feature -225 4.45
bc-s500-training-2-feature -205 2.97
sc-s500-training-2-feature -205 2.79
random-s500-training-2-feature -194 3.53
icpo-50-ascending-s500-training-2-feature -190 3.16
cpo-50-descending-s500-training-2-feature -189 3.19
uc-s500-training-2-feature -180 3.7
hc-s500-training-2-feature -174 2.78
cr-s500-training-2-feature -173 3.31
cpo-50-ascending-s500-training-2-feature -170 3.67
icpo-50-descending-s500-training-2-feature -170 3.7
cpo-50-absolute-s500-training-2-feature -168 3.28

Table 3: Absolute Performance Degradation (apd) for a representative sampling of experiments,
grouped by dataset and sorted by mean(apd).

33

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.5 Evasion Attack Experiments

Experiment mean(consistency) std(consistency)
cpo-50-absolute-b1000-training-2-feature 0.672 0.00794
uc-b1000-training-2-feature 0.672 0.00984
cr-b1000-training-2-feature 0.672 0.009
hc-b1000-training-2-feature 0.672 0.0086
cpo-50-ascending-b1000-training-2-feature 0.672 0.00813
cpo-50-descending-b1000-training-2-feature 0.673 0.00725
bc-b1000-training-2-feature 0.673 0.00833
icpo-50-descending-b1000-training-2-feature 0.674 0.0075
icpo-50-ascending-b1000-training-2-feature 0.674 0.0064
sc-b1000-training-2-feature 0.674 0.00943
random-b1000-training-2-feature 0.675 0.00752
gp-b1000-training-2-feature 0.679 0.00672
uc-ideology-training-2-feature 0.733 0.0125
sc-ideology-training-2-feature 0.735 0.0078
bc-ideology-training-2-feature 0.744 0.0107
icpo-50-descending-ideology-training-2-feature 0.746 0.00887
cpo-50-ascending-ideology-training-2-feature 0.746 0.00887
icpo-50-ascending-ideology-training-2-feature 0.748 0.00971
cpo-50-descending-ideology-training-2-feature 0.748 0.00989
hc-ideology-training-2-feature 0.75 0.00876
cpo-50-absolute-ideology-training-2-feature 0.752 0.00762
cr-ideology-training-2-feature 0.755 0.00848
random-ideology-training-2-feature 0.767 0.00726
gp-ideology-training-2-feature 0.794 0.00609
c3po-descending-lowest-influence-flips-nif-training-2-feature 0.728 0.0109
c3po-ascending-lowest-influence-flips-nif-training-2-feature 0.735 0.0108
c3po-ascending-random-flips-nif-training-2-feature 0.748 0.0132
uc-nif-training-2-feature 0.755 0.0134
c3po-descending-random-flips-nif-training-2-feature 0.757 0.0131
hc-nif-training-2-feature 0.762 0.0116
sc-nif-training-2-feature 0.762 0.0136
bc-nif-training-2-feature 0.763 0.0126
gp-nif-training-2-feature 0.767 0.0125
random-nif-training-2-feature 0.771 0.00756
icpo-50-ascending-s500-training-2-feature 0.721 0.0109
cpo-50-descending-s500-training-2-feature 0.721 0.0118
uc-s500-training-2-feature 0.721 0.0121
cpo-50-absolute-s500-training-2-feature 0.722 0.0109
icpo-50-descending-s500-training-2-feature 0.724 0.0122
cpo-50-ascending-s500-training-2-feature 0.724 0.012
hc-s500-training-2-feature 0.727 0.0101
bc-s500-training-2-feature 0.731 0.0113
sc-s500-training-2-feature 0.735 0.007
cr-s500-training-2-feature 0.736 0.00988
random-s500-training-2-feature 0.736 0.00723
gp-s500-training-2-feature 0.738 0.0104

Table 4: Consistency metric for a representative sampling of all experiments, grouped by dataset
and sorted by mean(consistency).

34

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.5 Evasion Attack Experiments

Experiment mean(doob) std(doob)
uc-b1000-training-2-feature 0.0697 0.00948
sc-b1000-training-2-feature 0.0706 0.00777
hc-b1000-training-2-feature 0.0732 0.00912
icpo-50-descending-b1000-training-2-feature 0.0753 0.00712
icpo-50-ascending-b1000-training-2-feature 0.0756 0.00769
cpo-50-ascending-b1000-training-2-feature 0.0782 0.00754
cpo-50-descending-b1000-training-2-feature 0.0795 0.00838
cpo-50-absolute-b1000-training-2-feature 0.0838 0.00832
gp-b1000-training-2-feature 0.245 0.00688
cr-b1000-training-2-feature 0.271 0.00556
bc-b1000-training-2-feature 0.366 0.0117
random-b1000-training-2-feature 0.369 0.00968
uc-ideology-training-2-feature 0.134 0.0145
hc-ideology-training-2-feature 0.142 0.015
bc-ideology-training-2-feature 0.143 0.0211
sc-ideology-training-2-feature 0.154 0.0148
cpo-50-descending-ideology-training-2-feature 0.215 0.0105
icpo-50-ascending-ideology-training-2-feature 0.215 0.0105
cpo-50-ascending-ideology-training-2-feature 0.217 0.011
icpo-50-descending-ideology-training-2-feature 0.217 0.011
cr-ideology-training-2-feature 0.227 0.0121
cpo-50-absolute-ideology-training-2-feature 0.251 0.0141
random-ideology-training-2-feature 0.386 0.0191
gp-ideology-training-2-feature 0.442 0.0148
c3po-descending-lowest-influence-flips-nif-training-2-feature 0.151 0.0143
c3po-ascending-lowest-influence-flips-nif-training-2-feature 0.154 0.0101
c3po-descending-random-flips-nif-training-2-feature 0.443 0.0203
sc-nif-training-2-feature 0.446 0.0211
uc-nif-training-2-feature 0.448 0.0201
c3po-ascending-random-flips-nif-training-2-feature 0.457 0.0167
hc-nif-training-2-feature 0.465 0.0242
bc-nif-training-2-feature 0.489 0.0182
random-nif-training-2-feature 0.561 0.0157
gp-nif-training-2-feature 0.573 0.017
uc-s500-training-2-feature 0.081 0.0131
hc-s500-training-2-feature 0.0831 0.0129
cpo-50-absolute-s500-training-2-feature 0.103 0.0103
sc-s500-training-2-feature 0.112 0.00944
bc-s500-training-2-feature 0.123 0.00886
cpo-50-ascending-s500-training-2-feature 0.126 0.0115
icpo-50-descending-s500-training-2-feature 0.127 0.0121
cpo-50-descending-s500-training-2-feature 0.128 0.00922
icpo-50-ascending-s500-training-2-feature 0.128 0.00921
cr-s500-training-2-feature 0.283 0.0121
random-s500-training-2-feature 0.349 0.0136
gp-s500-training-2-feature 0.396 0.0136

Table 5: Confidence Delta Out-of-Bag (doob) for a representative sampling of all experiments,
grouped by dataset and sorted by mean(doob).

35

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.5 Evasion Attack Experiments

2. Use statistics computed by the Avatar tree stats post-processor to identify the two most
important features in the training data.

3. Identify a target (tampered) label for each observation in the training data. For two-class data,
the tampered label for each observation was simply “the other class”. For data containing n
classes, we chose one of the other n�1 classes at random, with uniform probability.

4. Choose an attack algorithm.

5. For each evader (observation) in the test data, create an attack by flipping labels in the train-
ing data in the order specified by the attack algorithm. (We use each test sample individually
as an evader in order to build a statistical sense of the effect of evasion regardless of where in
feature space an adversary decides to evade.) After flipping each label, generate an ensem-
ble of decision trees using Avatar, and collect the out-of-bag, average, and voted accuracy of
the ensemble on test data, plus the ensemble’s prediction for the evader’s class label. Stop
flipping labels as soon as the predicted label no longer matches the ground truth label for
that evader, and note how many labels were flipped. Repeat the process until flip counts and
before-and-after accuracies had been gathered for every test observation.

Note that in some cases the ensemble misclassified an evader before any tampering had
occurred, so it was possible to have a tamper count of zero.

Evasion Attack Metrics

To evaluate the results of our evasion attack experiments, we considered a variety of metrics that
could reflect the adversary’s desire for stealth. Recall that the goal of an evasion attack is to cause
the misclassification of a single “evader” test observation, so as to escape detection. As with
confidence attacks, the adversary would want to minimize their cost (i.e. the amount of tampering
necessary), but unlike a confidence attack, we assume that the adversary would also want to avoid
affecting the overall performance of the defender’s model, to further avoid detection. This led to a
set of four metrics:

Flip Count (flips): An obvious metric for the cost of an evasion attack is the number of training
labels that have to be flipped to cause the misclassification of the evader’s label. Although
we assume that a real adversary would use evasion attacks for only one or a few evaders,
we computed evasion attacks for every test observation in each data set. This allowed us
to compute min, mean, and max statistics on the flip count for each observation, providing
concrete bounds on the cost of an evasion attack on any observation, along with the expected
(average) cost of an evasion attack for any specific observation. Of course, we assume that
the adversary wishes to minimize this cost. Note that, because an ensemble is likely to
misclassify at least one evader before any tampering has taken place, the minimum flip count
for a dataset / algorithm combination is almost always zero.

Collateral Damage (collateral): As part of the measures captured during our evasion attack ex-
periments, we knew how many observations were misclassified by the ensemble both before

36

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.5 Evasion Attack Experiments

and after an evasion attack. This allowed us to compute the number of observations other
than the evader that were misclassified as a result of the attack. We call this measure “Col-
lateral Damage”, since it reflects observations that are unintentionally affected by the attack.
Since the point of an evasion attack is to escape detection, we assume that the adversary
wishes to minimize this measure. As with the flip count, we compute min, mean, and max
statistics on collateral damage to characterize best, expected, and worst case scenarios for
the attacker. In some cases, an attack may actually cause the total number of misclassified
labels to decrease, leading to a negative collateral damage value.

Delta Voted (dvoted) The Delta Voted measure is the difference in voted accuracy for the ensem-
ble as a whole, before and after the attack, and we compute the min, mean, and max of
the measure across all attacks to characterize the attacker’s best, expected, and worst case
scenarios. Recall that voted accuracy is the measure of the actual performance of the ensem-
ble. From the attacker’s standpoint, lower values are better. As with the collateral damage
measure, some attacks may have the unintended side effect of increasing the ensemble’s
accuracy, in which case the delta voted measure will be negative.

Delta Out-of-Bag (doob) Like the Delta Voted measure, the evasion Delta Out-of-Bag measures
the difference in ensemble out-of-bag accuracy before and after an attack. Recall that out-
of-bag accuracy is knowable to the defender in the real world, so minimizing any changes to
it is particularly important to the attacker, in order to avoid detection. We compute the same
set of descriptive statistics on the doob measure, and as before it is possible to have negative
doob values if an attack causes the ensemble performance to increase.

Evasion Attack Analysis

Table 6 organizes the flip count metric for all of our evasion attack experiments, grouped by dataset
and sorted by the average flip count. Note that the nearest neighbor (nn) attack outperforms the
nearest neighbor cohort (nnc) attack in every case, often by more than an order of magnitude, and
that the nearest neighbor average flip counts are bad news for defenders, requiring an average of
ten-or-fewer flipped labels to cause misclassification of the evader, a surprisingly low cost for the
attacker.

Table 7 displays similarly bad news for defenders using the collateral damage metric – the
nearest neighbor attack is able to achieve its goal with very little collateral damage (and often
“negative” damage, helpfully improving the defender’s overall ensemble performance while si-
multaneously causing the evader to be misclassified!). Once again, the nearest neighbor cohort
algorithm has much lower performance (from the standpoint of the attacker).

Tables 8 and 9 display similar trends, with few exceptions. Particularly note that, for all datasets
except the 3-class nif dataset, even the maximum Delta Out-of-Bag metrics for nearest neighbor
evasion attacks are extremely low, suggesting that the adversary could attack any observation in
the test data with a low probability of detection by the defender. Also note that the corresponding
maximum Delta Voted metrics are much higher, reinforcing the notion that out-of-bag metrics are
optimistic and can be misleading for the defender.

37

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.5 Evasion Attack Experiments

Experiment min(flips) mean(flips) max(flips)
nn-b1000-test-2-feature-evasion 0 8.57 448
nnc-b1000-test-2-feature-evasion 0 179 500
nn-b1000-training-2-feature-evasion 0 8.69 999
nnc-b1000-training-2-feature-evasion 0 181 500
nn-ideology-test-2-feature-evasion 0 6.64 19
nnc-ideology-test-2-feature-evasion 0 19.9 134
nn-ideology-training-2-feature-evasion 0 6.29 60
nnc-ideology-training-2-feature-evasion 0 19.6 134
nn-nif-test-2-feature-evasion 0 8.33 261
nnc-nif-test-2-feature-evasion 0 51.1 105
nn-nif-training-2-feature-evasion 0 10.5 215
nnc-nif-training-2-feature-evasion 0 48.3 103
nn-s500-test-2-feature-evasion 0 8.19 323
nnc-s500-test-2-feature-evasion 0 34.9 261
nn-s500-training-2-feature-evasion 0 6.77 149
nnc-s500-training-2-feature-evasion 0 65 239

Table 6: Flip count summaries across all experiments, grouped by dataset and sorted by
mean(flips).

Experiment min(collateral) mean(collateral) max(collateral)
nn-b1000-test-2-feature-evasion -14 10.5 404
nnc-b1000-test-2-feature-evasion -14 118 404
nn-b1000-training-2-feature-evasion -20 7.78 658
nnc-b1000-training-2-feature-evasion -20 104 357
nn-ideology-test-2-feature-evasion -10 4.94 28
nnc-ideology-test-2-feature-evasion -8 18.3 97
nn-ideology-training-2-feature-evasion -8 3.73 23
nnc-ideology-training-2-feature-evasion -4 16.2 97
nn-nif-test-2-feature-evasion -1 7.93 193
nnc-nif-test-2-feature-evasion -3 21.4 93
nn-nif-training-2-feature-evasion -3 8.34 147
nnc-nif-training-2-feature-evasion -3 17.7 60
nn-s500-test-2-feature-evasion -10 6.27 261
nnc-s500-test-2-feature-evasion -14 26 250
nn-s500-training-2-feature-evasion -14 3.98 142
nnc-s500-training-2-feature-evasion -14 49.3 249

Table 7: Collateral damage summaries across all experiments, grouped by dataset and sorted by
mean(collateral).

38

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.5 Evasion Attack Experiments

Experiment min(dvoted) mean(dvoted) max(dvoted)
nn-b1000-test-2-feature-evasion -0.014 0.0105 0.404
nnc-b1000-test-2-feature-evasion -0.014 0.118 0.404
nn-b1000-training-2-feature-evasion -0.02 0.00778 0.658
nnc-b1000-training-2-feature-evasion -0.02 0.104 0.357
nn-ideology-test-2-feature-evasion -0.0383 0.0189 0.107
nnc-ideology-test-2-feature-evasion -0.0307 0.0701 0.372
nn-ideology-training-2-feature-evasion -0.0307 0.0143 0.0881
nnc-ideology-training-2-feature-evasion -0.0153 0.0621 0.372
nn-nif-test-2-feature-evasion -0.00333 0.0264 0.643
nnc-nif-test-2-feature-evasion -0.01 0.0715 0.31
nn-nif-training-2-feature-evasion -0.01 0.0278 0.49
nnc-nif-training-2-feature-evasion -0.01 0.0588 0.2
nn-s500-test-2-feature-evasion -0.02 0.0125 0.522
nnc-s500-test-2-feature-evasion -0.028 0.052 0.5
nn-s500-training-2-feature-evasion -0.028 0.00796 0.284
nnc-s500-training-2-feature-evasion -0.028 0.0986 0.498

Table 8: Delta voted accuracy summaries across all experiments, grouped by dataset and sorted by
mean(dvoted).

Experiment min(doob) mean(doob) max(doob)
nnc-b1000-test-2-feature-evasion -0.0287 -0.00305 0.0597
nn-b1000-test-2-feature-evasion -0.0287 -0.000882 0.0343
nnc-b1000-training-2-feature-evasion -0.0204 0.00122 0.0456
nn-b1000-training-2-feature-evasion -0.0197 0.00528 0.0385
nn-ideology-test-2-feature-evasion -0.0409 0.00909 0.064
nnc-ideology-test-2-feature-evasion -0.0409 0.0495 0.333
nn-ideology-training-2-feature-evasion -0.0206 0.0251 0.0747
nnc-ideology-training-2-feature-evasion -0.0206 0.0689 0.363
nn-nif-test-2-feature-evasion -0.0179 0.0167 0.316
nnc-nif-test-2-feature-evasion -0.0376 0.146 0.353
nn-nif-training-2-feature-evasion 0 0.0435 0.373
nnc-nif-training-2-feature-evasion 0 0.157 0.384
nn-s500-test-2-feature-evasion -0.0205 0.00743 0.0423
nnc-s500-test-2-feature-evasion -0.0212 0.0476 0.348
nn-s500-training-2-feature-evasion -0.0476 -0.001 0.0172
nnc-s500-training-2-feature-evasion -0.0278 0.0857 0.356

Table 9: Delta out-of-bag accuracy summaries across all experiments, grouped by dataset and
sorted by mean(doob).

39

4 LABEL TAMPERING, AND ITS CONSEQUENCES 4.5 Evasion Attack Experiments

Finally, note that it is surprising and not yet well understood that the Nearest Neighbor Cohort
attack scheme performed worse, for the attacker, than plain Nearest Neighbor. The original moti-
vation for Nearest Neighbor Cohort was that if you are trying to hide, for instance, an “Ideology”
sample, you would do best to change nearby samples from “Ideology” to “None”, but to leave
samples that were already “None” alone, in order to create an apparently homogeneous regime of
“None”. This is not what we observed; attacking all nearby samples, regardless of original class,
is a superior scheme, even if that creates new nearby “Ideology” samples. Chaos is somehow
superior to consistency here, which bears further investigation.

40

5 TAMPER REMEDIATION VIA ENSEMBLES OF OUTLIER MEASURES

5 Tamper Remediation Via Ensembles of Outlier Measures

5.1 Introduction to Ensembles of Outlier Measures (EOM)

Section 4 described at length the negative affects label tampering can have on a supervised machine
learning model. Here we turn to possible remediation, to the attempt to detect and even correct
such tampering. We will explain the structure of our core method, “ensembles of outlier measures”
(EOM) in some detail, as it’s novel and a bit odd. The core idea is a sort of meta-analysis, to use
one supervised machine learning model to look for attacks on another supervised machine learning
model.

In other words, we will be working with the same base data, but now with two new “meta”
classes of interest, Changed and Unchanged. To help make our experimental procedure concrete,
consider Table 10, which presents an expanded version of our ideology data. Each row is one of
our samples, O-class is the original, untampered truth label, and the F i columns are the original
attributes used to predict the O-class label; O-class and the F i are all that would be required in a
standard machine learning application.

Index O Class F 1 . . . F n T Class Tampered O 1 . . . O k
x 1 Ideology 3.1 . . . 0.3 None Changed 1.0 . . . 0.7
x 2 None 1.3 . . . 0.7 None Unchanged 0.0 . . . 0.9
x 3 None 2.2 . . . 0.4 Ideology Changed 3.0 . . . 0.8
x 4 Ideology 6.0 . . . 0.9 None Changed 1.0 . . . 0.3
x 5 Ideology 3.1 . . . 0.2 Ideology Unchanged 9.0 . . . 0.4
x 6 Ideology 9.7 . . . 0.1 None Changed 2.0 . . . 0.6
. .
x 1000 None 8.7 . . . 0.3 None UnChanged 3.0 . . . 0.5

Table 10: Data Organization for the Tamper Detection Problem

As we plan to use the same data scheme to investigate tampering, however, we require some
extra information. So the T-class column represents the tampered version of O-class, and the
Tampered column will have value “Changed” when O-class and T-class differ, else “Unchanged”.
The Tampered value is the one we wish to predict, and to do so we will need some additional
attributes, here depicted in the O i columns (where “O” was selected to suggest “outlier feature”,
as will be discussed below).

In other words, we’d like to treat the problem of detecting tampering as a supervised machine
learning problem. As such, we require training data and descriptive attributes suitable to tamper
detection.

41

5 TAMPER REMEDIATION VIA ENSEMBLES OF OUTLIER MEASURES 5.2 The
Current Set of Outlier Features

Training Data for Tamper Remediation

Acquiring training data is the easy part. For any given data set we can generate as many label-
tampered variants as desired by simply altering labels synthetically. Further, we can use any of
the tampering attacks described in Section 4, and at any level of budget in those attacks. The end
result in each case will be the column T-class, where we altered some subset of column O-class.
That T-class column thus defines the contents of the Tampered column, as just mentioned, and so
it is the Tampered column that will be used as “truth” in the model to be built.

Attributes for Tamper Remediation

It would be wonderfully simple if one could use the primary, already existing, attributes of the
data (that is, the F i columns in Table 10) to fuel the Changed/Unchanged analysis. However,
there’s no particular reason to suspect that the individual attribute vectors, selected for their value
in detecting ideological text, would be useful for the purpose of detecting tampering, and in fact,
testing confirms that they are not.

However, the various samples do not stand alone, they exist in a N-dimensional space, perhaps
with some structure. Conceptually one can think of loose clusters of data points, with the clusters
likely being somewhat homogeneous in class. The intuition is that that structure, the homogeneity
of the neighbor relationships, is altered by label tampering, and so secondary attributes sensitive to
those neighborhood relationships might be sufficiently correlated with tampering to fuel a machine
learning model.

5.2 The Current Set of Outlier Features

Accordingly, we investigated outlier measures as a way of characterizing points that were dissim-
ilar to their neighbors. Note this dissimilarity might be a function of a point’s position in feature
space, of its class, or both, and note further that it is the potentially tampered class that is considered
here. In other words, the outlier measures operate on the F i and T-class columns of Table 10.

The current set of outlier measures are:

1. Boosting weight. Boosting [?] is an ensemble machine learning method that iteratively gen-
erates data sets for new classifiers by more heavily weighting data that the current ensemble
is getting wrong. That is, it tends to focus attention on difficult to characterize outliers, with
the degree of that attention captured in the weight assigned to each sample.

Here we apply boosting to the original data and the primary labels (in this case, Ideol-
ogy/None) after tampering, and then extract the boost weights of each sample as an outlier
feature. The intuition is that the boosting weights will be high for samples with classes
unlike their neighbors.

42

5 TAMPER REMEDIATION VIA ENSEMBLES OF OUTLIER MEASURES 5.2 The
Current Set of Outlier Features

2. Ensemble confidence mismatch. Here we build a bagged ensemble of decision trees [?],
and use out-of-bag validation [?] to classify every sample in the training set. Ensemble
confidence in class y i is the percentage of the ensemble that voted for class y i. If y t is the
true class, then our ensemble confidence mismatch feature for sample x is 1-p(y t—x).

In other words, if the ensemble largely votes for the correct class, the mismatch is small. But
if the ensemble fails to put much weight on the correct class, which might correlate with an
oddball sample, then the mismatch is large.

3. Label Propagation and Spreading. Label spreading methods [?] propagate labels to their
nearest neighbors in an iterative fashion that tries to find a global consensus. ”Nearest” is
often tricky and unreliable to define; here we use ”semantic similarity” as defined by an
ensemble of decisions trees[?]. Further, our outlier measure is the delta between the original
label of a point and the weight of that label after convergence. If there is no change, then the
outlier measure is small. If global consensus strongly suggests that the label should change,
then the outlier measure will be higher.

4. KNN weighted voting. This is simply the percentage of the K nearest neighbors whose label
disagrees with the current label.

5. Local Outlier Factor. LOF[?] finds anomalous data points by measuring the local deviation
of a given data point with respect to its k nearest-neighbors.

6. Local Correlation Integral. LOCI[?], similarly to LOF, finds anomalous data points by mea-
suring the local deviation of a given data point with respect to the neighborhood described
by a certain distance metric.

7. Density Based Spatial Clustering of Applications with Noise (DBSCAN). DBSCAN [?] is a
density-based clustering algorithmthat tries to find high density neighborhoods that are sep-
arated from each other by low density neighborhoods. DBSCAN can be used to determine
outlierness in a variety of ways; by measuring the current point’s distance to the nearest core
cluster point and by simply determining if the current point was clustered or determined to
be unclusterable “noise”.

Tamper Detection and Remediation in General

With the preliminaries in place, it is relatively straightforward to explain how we build a model,
detect tampering, and correct for it.

1. Generate synthetic tampered data. That is, start with data like columns O-class and F i of
Table 10, select some samples (x i, . . .x m) to tamper according to some attack and budget,
and create the columns T-class and Tampered to reflect the tampering.

2. Extract new attributes to capture the outlierness of the samples with the tampered labels.
That is, use columns F i and T-class to determine columns O i.

43

5 TAMPER REMEDIATION VIA ENSEMBLES OF OUTLIER MEASURES 5.2 The
Current Set of Outlier Features

3. To train the model, feed the Tampered column as truth (as we are trying to learn to predict
the Changed/Unchanged) and the F i and O i columns as attributes to the Avatar code, which
generates a bagged ensemble of decision trees. (The F i attributes are not, in general, nec-
essarily expected to be predictive, but one can imagine circumstances when they might be.
And as ensembles of decision trees are unaffected by spurious features, there is no reason
not to include them.)

4. To apply the model, take a new dataset consisting of F i columns and a possibly tampered
Class column. Use the F i and the truth to compute O i, then feed F i and O i to the Avatar
model to predict “Changed” or “Unchanged” for every sample in a “Tampered?” column.

5. Finally, remediate. Since here we are working with two-class problems, we simply change
the class of every sample where Avatar predicted “Changed”, creating a new column, R-
class, of remediated class values. (Other remediations are possible and are under investi-
gation. For instance, one could simply remove the suspect samples, the ones with label
“Changed”, and operate only on the remainder; if effective, this would more conveniently
handle multi-class data.)

Consider Table 11 for an illustration of how remediation is applied. Here we have a column
labeled “Class” whose values may or may not be reliable, because we suspect they may have been
tampered with. We compute the outlier attributes O i from F i and Class, feed O i and F i to
an Avatar-generated model, and for each sample learn whether the model predicts that the Class
column was tampered with. In the notional example of Table 11 we see that Avatar assigns class
Changed to samples y 2 and y 1000. Therefore the column R-class matches the column Class,
except for y 2 and y 1000, where the class has been converted to the other possibility.

Index Class F 1 . . . F n O 1 . . . O k Tampered? R Class
y 1 Ideology 4.1 . . . 0.2 3.0 . . . 0.0 Unchanged Ideology
y 2 None 2.3 . . . 0.9 2.0 . . . 0.2 Changed Ideology
y 3 None 3.2 . . . 0.6 5.0 . . . 0.1 Unchanged None
y 4 Ideology 8.0 . . . 0.1 3.0 . . . 0.6 Unchanged Ideology
y 5 Ideology 4.1 . . . 0.4 1.0 . . . 0.7 Unchanged Ideology
y 6 Ideology 7.7 . . . 0.3 5.0 . . . 0.9 Unchanged Ideology
. .
y 1000 Ideology 8.7 . . . 0.5 6.0 . . . 0.8 Changed None

Table 11: A Notional Illustration of Remediation

44

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING

6 Tamper Remediation for General Supervised Learning

The previous section described the algorithmic idea, and the core machine learning model struc-
ture, behind the use of ensembles of outlier models (EOM) for tamper detection.

Here we will first describe how those ideas were implemented to permit exploratory analy-
sis, indicate how that implementation permitted extensive, even exhaustive investigation of attack
and budget trade-offs, and then focus on some specific scenarios to illustrate the results of those
experiments.

6.1 Matched, and Mismatched, Attack and Defense Models

As was mentioned in Section 5.1, given the existence of a pristine data set we can generate a
synthetic tampered data set by choosing a) any of the tampering attacks described in Section 4
and b) any level of budget in that attack, and then changing the indicated number of labels in the
indicated order.

An obvious question arises: which attack to choose, and at which budget? If you are a defender,
and you know what specific attack the attacker will use, then of course you would train your
defense on that attack. Similarly, if you are the attacker and you know which defense is in play,
you’ll choose the attack most effective against that defense.

Of course, the opponent’s choice of strategy will rarely be known. Accordingly, in CADA we
nearly exhaustively investigated all pairs of attacks and defenses, across the full range of possible
budgets. This allowed us to build intuition in a complex and novel space, and set us up to investigate
robustness questions, such as: if I’m the defender, which assumption about the attacker gives me
the best worst case outcome, even if I’m wrong?

6.2 The Experimental Set-Up

Since the experimental design (and necessarily, its implementation) is therefore fairly complex,
and often confused us as we built it, we here revisit the algorithm outline of Section 5.2, filling
in the additional scaffolding and detail necessary for implementation. As with the attack im-
plementations, the tamper detection and remediation ideas were implemented in Python, making
extensive use of NumPy and SciPy for computation. The experimental interface was implemented
in IPython, for ease of visualization and interactive control. See Appendix A for further discussion
and pointers.

So, the implementation details:

1. Select one of the datasets analyzed in Section 4.3. The selected data will thus include a
“tamper training” dataset (“ttrain” for the purposes of this process description) and a “tamper

45

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.2 The
Experimental Set-Up

test” dataset (“ttest”), each composed of truth labels, features, and a series of corresponding
pre-calculated attacks for the dataset. (Recall that in its final form, a a single specific attack is
just an ordering of the samples in a data set, indicating the order in which one would choose
to change their labels.)

2. Identify a budget mode (count or percent), budget range and granularity (increment) for
ttrain. Designate the truth column and feature columns for ttrain.

3. Identify a budget mode (count or percent), budget range and granularity (increment) for ttest.
Designate the truth and feature columns for ttest.

4. Iterate over all of the pre-calculated attack algorithm combinations for the ttrain and ttest
datasets. Note that ttrain and tttest attacks can be different, as well as the ttrain and ttest
attack budgets.

5. For the current attack algorithm, increment over the attack budget levels on the ttrain dataset.

(a) Flip labels (for two-class data simply switch an observed label to “the other class”) in
the ttrain dataset according to the ttrain attack budget. This supplements the original
data file by generating 1) a “changed” column that designates whether a label was
flipped or not and 2) a “flipped” column that holds the value of the tampered labels.
(To re-emphasize this point: the “flipped” column has a label for all samples, but only
some of them may have been tampered with. For example, if the current attack budget
level is 10%, then 90% of the “flipped” column values will still be the same as the
original truth values.)

(b) Extract the outlier features as described in Section 5.2 from the ttrain features, based
on the tampered ttrain labels.

(c) Use Avatar to build a tamper detection decision ensemble, using the calculated ttrain
outlier features (optionally supplemented by the original ttrain features) as features and
the “changed” ttrain column as truth.
So again note that the resultant Avatar model will learn to predict “Changed” or “Un-
changed”, not “Ideology/None” or whatever the original task might have been, and so
will eventually be evaluated as to how well it can detect tampered data in a test set.

(d) Once the Avatar tamper detection model is built, use the tree stats code, Section 2, to
determine and record the relative importance of each of its features, for later analysis.

(e) Use Avatar to build a classification decision ensemble, using only the original ttrain
features as features and the tampered ttrain labels (that is, the “flipped” column) as
truth. The resulting model thus predicts “Ideology/None” or whatever the original
task might have been. Testing it will tell us what accuracy loss was induced by the
tampering. We wished to record this in pursuit of the idea that certain outlier features
might be more or less useful accordingly to how severely the data had been tampered
with.

6. Given the current ttrain attack budget increment, increment over the ttest attack budget levels
to create testing data.

46

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.2 The
Experimental Set-Up

(a) Flip labels (for two-class data simply switch an observed label to “the other class”) in
the ttest dataset according to the ttest attack budget, again generating 1) a “changed”
column that designates whether a label was flipped or not and 2) a “flipped” column
that holds the value of the tampered labels.

(b) Extract the outlier features as described in Section 5.2 from the ttest features based off
the tampered ttest labels.

(c) Using the tamper detection decision ensemble developed from the ttrain attack budget,
analyze the ttest outlier features and generate 1) a “predicted” column that designates
whether the model expects that a label has been tampered with and 2) a ‘Overall Voted
Accuracy” which describes how well a tamper detection model performs on tampered
data.

(d) Use Avatar to build a classification decision ensemble, using the ttest features as fea-
tures and the tampered ttest labels as truth. Test this model on the untampered ttrain
dataset, calculating an “Overall Voted Accuracy”. The point here is to determine how
well a tampered classification model performs on untampered test data, by way of com-
parison with subsequent remediation.

(e) Using the predicted ttest labels, remediate the tampered ttest data (for two-class data
simply switch an observed label to “the other class”) generating a new “remediated
truth” column.

(f) Use Avatar to build a classification decision ensemble, using the ttest features as fea-
tures and the remediated truth ttest label as truth. Test the built model on the untam-
pered ttrain dataset, calculating the repaired “Overall Voted Accuracy” to describe how
well a remediated classification model performs on untampered data.

In sum, for a given data set we exhaustively vary four parameters:

• presumed attack strategy (that is, the strategy the defender simulates to built their tamper
detection model),

• presumed attack budget,

• actual attack strategy,

• actual attack budget.

An example setting of that 4-tuple might be (brute-clustering, 10%, random, 25%). This is inter-
preted as “the defender builds a tampering detection model presuming that the attacker will corrupt
the top 10% of the labels in the order suggested by brute clustering, but in fact the attacker corrupts
the 25% of the labels in a random order.”

For each of the 4-tuples investigated, we record:

• The accuracy of the defender’s ability to detect tampered points.

47

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.3 Example
Experimental Results

• The relative importance of each of the outlier features in detecting that tampering. (Techni-
cally, this depends only on the first two values of the 4-tuple).

• The baseline accuracy of the classification model if we don’t remediate.

• The accuracy of the classification model if we use the tamper detection model to first reme-
diate the labels detected as tampered.

6.3 Example Experimental Results

Figure 8: Tamper detection accuracy for brute-clustering tampered data presumed to be randomly
tampered.

The next challenge was how to best to investigate and absorb all the experimental data thus
generated on the the effects of varying combinations of attack and defense mechanisms. We thus
created and investigated a number of summary visualization methods.

One of these was simple accuracy heatmaps, in which the x and y axis indicate some specific
choice for presumed and actual attack strategies, and the x and y position indicate the attack budget.
See Figure 8 for an example tamper detection heatmap. Some notes on interpretation:

48

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.3 Example
Experimental Results

Figure 9: Tamper detection accuracy for randomly tampered data presumed to be randomly tam-
pered.

• The top left cell is where no tampering actually occurs and none is presumed. Thus the trivial
“no tampering exists” model is perfectly accurate.

• That also explains what might seem to be a puzzling increase in accuracy at the bottom
right. Here nearly all data points are corrupted (at x near 100%), but since the defense model
is expecting this (y near 100%), the “all points are tampered” model is similarly almost
perfectly accurate.

• To interpret, say, the second row, y=10, this indicates the defenders gradually degrading abil-
ity to spot tampering when the defender assumes 10% tampering, but the level of tampering
actually increases.

• The second column, x=10, indicates the results where the level of tampering is actually
10%, but the defender assumes increased levels of tampering. The cliff at 50% indicates
the unexpected effect (replicated widely) that as long as the defender is not too paranoid,
its tamper detection accuracy is fairly robust even though it does not precisely guess the
attackers budget.

• Finally, compare Figure 8, where there is a mismatch between attacker and defense strategy,

49

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.3 Example
Experimental Results

Figure 10: Classification accuracy of randomly tampered model.

with Figure 9, where the defender accurately guessed the attacker strategy. The heatmaps
are largely similar, generating the unexpected observation that getting the presumed attack
wrong did not materially reduce tamper detection accuracy; getting the budget right is a
much more important consideration.

As a second visualization mechanism, we generated simple accuracy plots showing the degra-
dation of classification accuracy as the amount of tampering increases. These basically replicate
the degradation plots of Section 4.3, but for the specific attacks generated, and help to serve as a
baseline comparison to remediation plots. One example is in Figure 10; the fact that accuracy stays
close to constant until roughly 40% tampering is reached is a tribute to the robustness of ensembles
of decision trees . . . to random label noise. This was initially encouraging, but contrast Figure 11,
where the accuracy degradation is due to the “subtle clustering” attack, and is nearly linear with
the attack budget. And indeed, as was earlier illustrated in Figure 6, almost all of the non-random
attacks lack the robustness to noise illustrated in Figure 10.

To investigate the effectiveness of remediation, we first returned to heatmaps such as Figure 12.
These heatmaps describe the accuracy of a remediated classification model in classifying tampered
data. However, we realized that in and of themselves they can be deceptive. Figure 12 suggests

50

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.3 Example
Experimental Results

Figure 11: Classification accuracy of subtle-clustering tampered model.

that post-remediation accuracy can be pretty good; but recall the first section of Figure 10, which
indicated that pre-remediation accuracy was also not bad. Accordingly we also compute “delta ac-
curacy” heatmaps, depicting the change in classification accuracy due to remediation. An example
is in Figure 13. Some notes on interpretation:

• For this strategy trade-off (presume a random attack, and the actual attack is indeed random),
presuming a budget of less than 50% doesn’t materially help or hurt. It consistently only
helps if the attack budget really is 50%.

• Presuming an attack above 50% materially hurts if the attack is actually less than 50%, but
materially helps if that presumption is correct.

These remediation heatmaps are individually interesting, but they also made it difficult to pick
out trends. The ultimate goal of a defender here would be to look at all of these heatmaps and try
to determine what specific choice of defense strategy and budget she should make. So we created
a number of graphics intended to illustrate various optimistic and pessimistic scenarios resulting
from a specific defense choice.

51

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.3 Example
Experimental Results

Figure 12: Classification accuracy of remediated model of randomly tampered data presumed to
be randomly tampered.

So first consider Figure 14a, just to understand the related figures to follow. This figure comes
from attacking the ideology data set (see “Ideology/None” in the upper label) with a random attack
(see the lower label). We are plotting accuracy on the y-axis, and attack budget on the x-axis. The
dotted purple line (“no remediation” in the legend) indicates the accuracy if we don’t remediate.
The rest of the lines indicate the accuracy if we do remediate with models based on the various
presumed attacks; these remediation values are a single value from the columns in heatmaps such
as Figure 12, with those values selected according to a specific “scenario”, to be discussed. In any
case, the hope (sometimes to be dashed) would be that the remediated curves would be higher than
the no-remediation curve.

The two plots in Figure 14, called the “Maximum” accuracies in the caption, show a best case
scenario. Here, for each possible level of attack tampering (the x-axis), we have selected from
that column the maximum available remediated classification accuracy. Therefore the accuracy
curves in this figure assume that the defender was lucky enough to pick the best possible level of
tampering for remediation at each attack tampering granularity.

While the results of the that curve appear very promising, of course it is unrealistic to expect a
defender to be optimally picking tampering levels for remediation in all cases. Therefore next we

52

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.3 Example
Experimental Results

Figure 13: Change in accuracy due to remediated model n of randomly tampered data presumed
to be randomly tampered.

looked at the diagonals of our remediated classification heatmap curves and plotted them against
unremediated accuracy as shown in Figure 15. These curves describe how well remediation works
when the defender can guess the exact amount of tampering an attacker has performed on the data.
There are a couple of interesting anecdotal points to note here:

• As shown in the Brute Clustering subgraph of Figure 15, when a defender selects a good
remediation mechanism (here, best-icpo-50-descending) and correctly guesses the tamper
attack budget, remediation can offer some model resilience against an intelligent attack.
What’s particularly interesting here is that the best attack to presume is not the actual attack.
Brute clustering is the actual attack, but defending against it specifically is actually one of
the worst performing strategies.

• Also note that when the actual attack is random (in the first subfigure), there is little value in
any of the remediation methods, until and unless the attack budget gets above around 45%.
Before that, the natural resilience of ensembles of decision trees is so effective that most
remediation methods hurt, even if they correctly guess the attack budget.

For another slice at the data, a “good but not best outcome”, assume we will examine heatmaps

53

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.4 Conclusions
and Next Steps

such as Figure 12 and find the row with the highest summed value, and use that as a fixed presumed
tamper budget. This is what we see in Figure 16; the final two-digit value in the legend names
indicates the defense tamper budget that was best for each attack. Similarly, Figure 17 indicates
a “bad but not worst outcome” where the defender has unluckily selected a defense budget which
has the lowest summed accuracy across all the attack budgets.

Finally, we note that the plots to date have attempted to capture metrics that indicates the
robustness of a presumed defense over the various attacks and budgets the attacker might attempt.
We also considered acting on the happier assumption that an attacker has limited resources and
therefore will likely have minimal capabilities of tampering with our data. The line graphs shown
in Figure 18 give insight into this type of assumed scenario. In order to create this graph, we
selected the case where an attacker was tampering with 10% of our data. We then assumed a
defender who selected the defense remediation budget that gives the best remediated classification
accuracy against the 10% budget attack. We then plotted the remediated classification accuracy
at the selected best granularity across all possible attack budgets, in order to assess the impact of
the attacker indeed attacking at a level other than 10%. Again (and again, anecdotally), the results
seem to favor remediation if an intelligent attack is expected, as overall many defense mechanisms
offer resilience at early stages of tampering and do not significantly decrease performance at further
levels of tampering. However, again it appears that remediation against an unintelligent attack does
not earn a defender any valuable accuracy improvements.

6.4 Conclusions and Next Steps

In conclusion, we have:

• Described Ensembles of Outlier Methods (EOM), a method for building a meta-model for
detecting tampered data via supervised machine learning.

• We have shown how to use EOM to remediate tampered data by detecting, and correcting,
the labels of suspect data points.

• We have implemented all of this in a code base that permits the exhaustive experimental
investigation of presuming certain attacks and budgets when the actual attacks and budgets
may be different.

• We have designed and implemented a wide variety of plots and metrics to permit investiga-
tion of that exhaustive investigation from a variety of perspectives.

The sensible next steps would be to develop metrics and post-processing tools to illuminate:

• What combination (which 4-tuple) was worst for the defender? What combination was worst
for the attacker? What trends are observable?

54

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.4 Conclusions
and Next Steps

• Similarly, what presumed attack was most robust for defender? Which actual attack was
most robust for attacker?

• Which outlier features were most useful over all?

• Which outlier features were most useful when unremediated accuracy was high? Was low?
Is there a difference?

• If we look at the relative efficacy of the outlier features for the 4-tuple where the defender
does worst, or where the defender does best, what insight might that give us as to how to
improve or add to our current set of outlier features?

55

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.4 Conclusions
and Next Steps

(a) Presumes Random Tampering

(b) Presumes Brute Clustering Tampering

Figure 14: Remediation Maximum Accuracies

56

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.4 Conclusions
and Next Steps

(a) Presumes Random Tampering

(b) Presumes Brute Clustering Tampering

Figure 15: Remediation Diagonal Accuracies

57

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.4 Conclusions
and Next Steps

(a) Presumes Random Tampering

(b) Presumes Brute Clustering Tampering

Figure 16: Remediation Good Accuracies

58

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.4 Conclusions
and Next Steps

(a) Presumes Random Tampering

(b) Presumes Brute Clustering Tampering

Figure 17: Remediation Bad Accuracies

59

6 TAMPER REMEDIATION FOR GENERAL SUPERVISED LEARNING 6.4 Conclusions
and Next Steps

(a) Presumes Random Tampering

(b) Presumes Brute Clustering Tampering

Figure 18: Remediation Best 10+% Accuracies

60

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS

7 Quantifying Paranoia for Label Tampering Attacks

7.1 Introduction

In the previous chapter, we used a supervised machine learning meta-model to attempt to detect
individual points that may have been tampered with in order to undermine a lower-level supervised
machine learning model.

A different but also useful and interesting question is: can we detect, overall, if a data set
has been tampered with? Certainly if we confidently can find even one tampered point we know
that tampering has happened, but it could be the case that a data set seems odd or misshapen as a
whole (in a fashion we’ll attempt to make quantitative below), even if we can’t confidently point a
suspicious finger at any one data point.

One idea, only lightly explored in CADA, was that comparing a detected tampering to an op-
timal tampering might provide a principled way of detecting a sentient signature. In other words,
even if mislabeled points are detected, it might be that simple noise or other non-adversarial pro-
cesses are the cause, as was indeed the case in some of the work that inspired CADA. “Never
ascribe to evil what can be explained by incompetence”; to make that principle quantitative we
need a statistical test that can distinguish between random attacks and adversarial ones.

As one approach to distinguish noise from adversarial attack, we note that the Ensemble of
Outlier Methods in the previous chapters gives us a rank ordering of the possible actual tampering
in a data set. Further, the various attacks of Section 4 tell us the order in which a competent attacker
would attack. So if a detected tampering seems statistically more similar to an optimal attack than
a random one, then this seems to suggest sentient involvement.

This seemed a promising idea, but was not fully explored. Partly because it seems to require a
daunting understanding of the characteristics of the noise in the Changed/Unchanged assessments
delivered by the EOM method, but also because an alternate line of attack proved more quickly
successfully. Instead of attempting to analyze a noisy estimate of the purported attack, we will use
Bayesian logistic regression (yet another machine learning method) to model the data, including
its labels. We will then analyze the “goodness of fit” of the logistic regression model to detect, in a
quantitative way, models that are indeed misshapen, models that are more ill-fitting than the noise
processes in untampered data would predict.

7.2 Background

In its simplest formulation, logistic regression can be used to analyze relationships between a
dichotomous (categorical) dependent variable, also called the “response” variable, and a set of
independent variables. The dependent variable can take on two values e.g. {Ideology, None},
{good, bad}, or in general, Y 2 {�1,0}, while the independent variables X may be metric or
categorical. The goal is to estimate the probability that a particular set of values for the independent

61

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.2 Background

variables is a member of a response category, e.g. Y = 1 or Y = �1. The model here will be
represented by a series of weights b , applied to the independent variables and fed through an
estimation function. These weights capture the probabilistic odds of one feature being more or less
significant, relative to the other features, in predicting the category of the response variable.

Specifically we are interested in the conditional probabilities:

P(y = 1|b ,xi) = y(b T xi) = y

Â
j

b jxi, j

!

where P(y= 1|b ,xi) is the probability that observation xi belongs to the category “1”, modeled as a
transformation y() of the inner product of the weights b and the independent variables describing
xi. There are a number of alternative transformations available, but we will focus on the logistic
function:

y(z) =
exp(z)

1+ exp(z)

Logistic regression, or log-regression, combines the independent variables to estimate the prob-
ability that a particular event will occur (Figure 19). The response variable is a probability value
in the interval [0,1].

1

x(1)

x(2)

x(n)

In
pu

t v
ec

to
r f(x) [[0,1]z

β
0

β
1

β
2

βn

Figure 19: Data Flow in Log-regression

The only significant distributional assumption with this approach (other than assuming that the
underlying data from classes 1 and -1 do indeed come from some parametric distribution) is that
the log-likelihood ratio of the true class distribution, whatever it is, is linear in the observations.
This assumption is valid if the data comes from a large range of exponential density families, e.g.
normal, beta, gamma, etc. The method does not make any assumptions of normality, linearity, or
homogeneity of variance for the independent variables.

If fi are the class conditional parametric densities for classes 1 and -1, and b are the model
parameters, then:

log
f1(x)

f�1(x)
= b0 +b1x+ · · · (1)

62

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.3 Model

Equivalently:

f (x) = y (b0 +b1x+ · · ·) (2)

where y(z) is the logistic function y(z) = 1/(1+ exp�z) and f (x) = P(y = 1|x) is the probability
of being in class 1 (Figure 19). The likelihood function for the data is

L(D,b) = P(D|b) =
n

’
j=1

P(y = y j|x j,b)

where x j is the vector of independent variables associated with the j-th observation x j, and y j is
the label, the response value, associated with that observation.

Let p j = p(y j = 1|x j,b). Since, remember, yi 2 [0,1], the likelihood function can then be
expressed:

L(D,b) =
n

’
j=1

P(y = y j|x j,b) =
n

’
j=1

py j
j (1�p j)

1�y j

The log-likelihood is often more convenient: l(D,b) = logL(D,b). Our goal is to maximize the
likelihood function. Or, equivalently, minimize the error function: E(D,b) = �Âi l(D j,b).

7.3 Model

Given N observations, then for i = 1, . . . ,N :

yi ⇠ px(1�p)1�x

ni = b0 +b1x+ · · ·
y(pi) = ni

The log-likelihood function is then:

li = yi ⇤ log(y�1(ni))+(1� yi)⇤ log(1�y�1(ni)) (3)

7.4 Establishing the Priors

Determining the logistic parameters requires starting with priors, with a starting point for their
structure. There are three broad possibilities:

63

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.5 Identifying
Influential Observations

1. Parameter priors which involve L1 regularization using a Laplace (double exponential):

b j ⇠ lb exp(�lb x)
lb ⇠ U(0.001,10)
b0 ⇠ N(0,1000)

2. An alternate structure which again involves L1 regularization using a Laplace (double expo-
nential):

b j ⇠ lb exp(�lb x)
lb = 1
b0 ⇠ N(0,1000)

3. Parameter priors which are assumed to be vague or dispersed:

b j ⇠ N(0,1000)
b0 ⇠ N(0,1000)

Case 2 provided the best convergence rates and was the basis for all CADA analyses. Further
investigation into using a more general prior from the Cauchy family [?] could be useful.

7.5 Identifying Influential Observations

Conditional Predictive Ordinate

The use of cross-validation (CV) predictive densities is a common approach for model checking.
To begin, the full data, y, is randomly divided into two subsets {y1,y2}. The first set y1 is used
to fit the model, and the second set y2 is used for model validation by checking the CV predictive
density:

f (y2|y1) =
Z

f (y2|b) f (b |y1)db

Difficulties arise since selection of different y1 and y2 generally provide different results. As an
alternative, the leave-one-out cross-validation predictive density, CV � 1, has been proposed [?].
This is also known as the Conditional Predictive Ordinate (CPO) [?]). In either case, instead of
breaking the data into a single partition of {y1,y2}, the data is instead broken into yi (the single
sample) and y¬i (all samples except yi), and the CPO model checking is applied to that split for all
i.

The idea is that CPOi provides a quantitative measure of the effect of each observation yi on
the predictive density f (y).

64

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.5 Identifying
Influential Observations

[f (yi|y¬i)]
�1 =

f (y¬i)

f (y)
=
Z f (y¬i|b) f (b)

f (y)
db

=
Z 1

f (yi|b)
f (b) f (y)db

= Eb |y
1

f (yi|b)

The CPO for each sample can be estimated from the sample mean of the inverse density function
evaluated at yi for each set of parameters b from the full posterior distribution:

CPOi =
f (y)

f (y¬i)
=

1
N

N

Â
j=1

1
f (yi|b j)

!�1

Specifically, the CPOi is the inverse of the posterior mean of the inverse likelihood of yi . A Monte
Carlo estimate of the CPO is obtained without actually omitting yi from the estimation, and is
provided by the harmonic mean of the likelihood for yi .

The CPO is a convenient posterior predictive check because it may be used to identify outliers
and influential observations. The CPO expresses the posterior probability of observing the value
of yi when the model is fitted to all data except yi, with a higher value implying a better fit of the
model to yi, and very low CPOi suggest that yi is an influential observation. Influential in this
case indicates that the points are outliers. Removing (or changing the labels on) these points will
change the estimates provided by the model. This, then, is the source of the “cpo” and “icpo”
attacks discussed in Section 4.3.

In our case, since the results are discrete, CPOi is an estimate of the probability of observing yi
given that y¬i has already been observed. Therefore comparison of CPOi with the corresponding
frequencies of y¬i provides insight into the predictive capability of the model. Closely related is
the posterior predictive ordinate for the ith observation, PPOi = f (yi|y).

PPOi also provides a measure of the influence of an observation. Low PPOi values are generally
associated with the tail area of the sampling distribution, but extremely low values indicate outlier
observations. A estimate of the conditional predictive ordinate is provided by the harmonic mean
of the PPOi:

[CPOi =

1
T

T

Â
j=1

1
f (yi|b j)

!�1

(4)

However this can be cumbersome to calculate and so we will take advantage of the following:

ICPO = [CPOi]
�1

E[ICPO] =
1
T

T

Â
j=1

✓

1
PPO j

◆

65

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.5 Identifying
Influential Observations

where PPOi is readily available from within our MCMC simulation and the CPOi can be estimated
from the posterior predictive ordinate over T MCMC simulations[?].

Pseudo-Bayes Factors

In the previous section we developed a method whereby logistic regression and Conditional Pre-
dictive Ordinates were used to evaluate the degree of influence of individual observations on the
overall model; being influential in this fashion suggests that a point is an outlier.

This in turn suggests that we might be able to determine if a data set, overall, has more outliers
than one would expect to occur “naturally”. In other words, given an untampered data set U we
could start by extracting a logistic regression model from it. Call this Model A, Ma, and recall that
such a model is captured in the parameter vector ba. Further, consider a new data set D, drawn
from the same distribution, and then possibly subject to label tampering. Extract Model B, Mb,
from it, represented by bb.

If D is untampered data drawn from the same distribution as U , then Models A and B should
both individually have roughly the same goodness-of-fit for D, and we can check this by examining
the CPO values generated by Models A and B on D.

To set this up, we start by computing the posterior model odds for Models A and B. Formally,
given data D, to compare Model A: Ma with parameter vector ba to Model B: Mb,bb, we compute
the posterior model odds and manipulate the result to separate something called the pseudo-Bayes
Factor (PBF):

PBFab =
f (D|Ma)

f (D|Mb)
=

R

f (D|ba,Ma) f (ba|Ma)dba
R

f (D|bb,Mb) f (bb|Mb)dbb

The Bayes factor provides insight into the relationship between the posterior model odds and the
prior model odds, that is, the model odds before the data is available:

f (D|Ma)

f (D|Mb)
= PBFab

f (Ma)

f (Mb)

This implies that whatever the prior odds of Model A relative to Model B, the data, through the
PBF, provides additional information that will positively or negatively influence the odds of Model
A versus Model B.

The PBF is readily available from our CPO analysis:

PBFab =
’N CPOai|Ma

’N CPObi|Mb
(5)

The intuition is that if Models A and B derived from data D are indeed nearly identical, the
PBF will be very close to 1, and so the data D doesn’t particularly favor one model over the other.

66

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.5 Identifying
Influential Observations

However, if the data has been tampered with, then Model B will fit better, have fewer outliers. And
since outliers generate lower CPO values, the PBF ratio will thus be less than one.

In sum, given our set up, a PBFab < 1, or, equivalently, log(PBFab) < 0, suggests that the
data D has been tampered with. Prior work[?] provides a table for how to interpret these values;
remember, “support for Mb” means “the data has been tampered with”.

Figure 20: Interpretation Scheme for Bayes Factor [?]

Wasserstein’s Metric (Mallows Distance): An Alternative to PBF

In Section 7.6 we will present some experimental results for detecting tampering via CPO and
PBF, but first we would like to note some issues with, and an alternative to, CPO when the metric
is used for more formal model criticism (see [?] or [?] p.90, for discussion and alternatives):

• The harmonic mean can become numerically unstable value of xi with very small likelihood,
and subsequent large impact on CPO.

• The applicability of the central limit theorem may then also be questioned. However, since
we are looking for CPO to be an indicator rather than a hard statistic, this should not be a
problem.

• CV-1 avoids double usage of the data, but is difficult to estimate. Alternatively, we use the
full posterior predictive distribution as an approximation if we have a substantial number of
observations [?], p. 205-206.

Fundamentally, the pseudo-Bayes Factor in Equation 7.5 is a comparison of the probability dis-
tribution of CPO values for each model Mi, and this points to an alternative formulation. Consider
the histograms of the estimated CPO values depicted in Figure 21. The three histograms depict
the CPO values from a) an untampered Ideology data set, b) a mildly tampered one, and c) an
aggressively tampered one. Alternatives to PBF include pseudo Bayes factors (PsBF) based on a

67

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.6 Experiments and
Results

ideology−two−features.data

CPO

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

ideology−two−features−best−sc01.data

CPO

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
10

30
50

70

ideology−two−features−best−sc10.data

CPO

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
10

30
50

70

Figure 21: CPO Histograms for Model Ma,Mb and Mc

ratio of pseudo marginal likelihoods (PsMLs), Deviance Information Criterion (DIC), and Widely
Applicable Information Criterion (WAIC), the latter being a recent addition to the analysis toolkit.

However, an additional alternative metric for comparison of two probability density functions
is Wasserstein’s Distance, also known as Mallow’s Distance. Unlike the pseudo-Bayes Factor,
Mallows Distance satisfies the three requirements for a true metric [?].

Let F,G be two distributions we wish to compare. For F ⇠ (µF ,sF) and G ⇠ (µG,sG):

Mq(F,G) = inf
P

n

(EP||X �Y ||q)1/q : (X ,Y) ⇠ P,X ⇠ F,Y ⇠ G
o

, for q 2 [1,•)

and
M2

2(F,G) = (µF � µG)
2 +(sF �sG)

2 +2sFsG(1�rQQ(F,G)),

where rQQ is the QQ correlation described in [?] .

If F,G are multivariate non-Gaussians then: M2(F,G) = ||µF � µG||+ M2
2(F0,G0) , where

F0,G0 are the zero mean centered F,G distribution respectively [?]. The first term captures the
change in the location of the two distributions, while the second term captures the change in the
shape from one distribution to the other.

Unlike the pseudo-Bayes Factor, Mallows Distance is expected to be less sensitive to small
values of xi that lead to a small likelihood and instability of the harmonic mean.

7.6 Experiments and Results

Feature Influence Figure 22 depicts the LogOdds for the parameters of the model described
in Section 7.3 using 35 features of the 50 features for the Ideology data set. A representation
of the impact of each parameter is present in the odds values: LogOdds = exp(bi). Log-odds
characterizes the percentage increase/decrease in the probability that Y = 1 (’ideology’) given a
unit increase in that feature (and holding the remaining features fixed). Features with log-odds
close to zero are not having a significant impact on the model, while features with high/low log-
odds are important.

68

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.6 Experiments and
Results

−15 −10 −5 0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Case 2

LogOdds

D
en
si
ty

b[1]
b[2]
b[3]
b[4]
b[5]
b[6]
b[7]
b[8]
b[9]
b[10]
b[11]
b[12]
b[13]
b[14]
b[15]
b[16]
b[17]
b[18]
b[19]
b[20]
b[21]
b[22]
b[23]
b[24]
b[25]
b[26]
b[27]
b[28]
b[29]
b[30]
b[31]
b[32]
b[33]
b[34]
b[35]
b0

Figure 22: LogOdds Distribution for Model Parameters (35 features)

69

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.6 Experiments and
Results

−30 −20 −10 0 10 20 30

0.
0

0.
5

1.
0

1.
5

2.
0

ideology−two−features.data

LogOdds

D
en
si
ty

b[1]
b[2]
b0

Figure 23: LogOdds Distribution for Model Parameters (2 features)

70

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.6 Experiments and
Results

Because Figure 22 is a bit complex, consider also Figure 23, which depicts the LogOdds for
the parameters of the model using only 2 of the 50 available features. To interpret this, note that it
is the position of a peak, not it’s magnitude, that matters. So:

• The green peak is near 0, which means that the choice of b0 in the model from Section 7.3
doesn’t matter much.

• The black curve, corresponding to b1, has a peak at -11 or so, which means that feature 1
does matter, and when it is high it suggests against the Ideology label in favor of the None
label.

• The red curve, corresponding to b2, has a peak at 20. |20| > |� 11|, so this suggests that
feature 2 is more influential than feature 1, and that increases in its value vary the Ideology
label.

Observation Influence Figure 24 depicts the difference between the CPO values for all 260
samples in two versions of the ideology data set, in both cases described by only two features.
The difference between these two data sets is that the first data set has only one tampered label,
where the second has eleven additional tampered labels. The effect of tampering, the increase in
“outlierness” in the samples, is obvious, as the eleven observations where labels have been flipped
are clear from the figure.

●●

●

●●●●●●●
●
●
●
●
●

●
●●●

●
●
●
●

●

●

●
●
●●●

●
●

●●
●
●
●●
●●●●

●

●
●
●
●●
●
●●
●●
●
●●●

●●
●
●
●

●

●
●●●●●●●

●

●

●
●●●

●
●●●

●

●

●

●

●

●
●●●

●
●●●●

●●●
●●●●●●

●●●
●
●●●

●

●●●
●●
●●

●

●●●

●

●

●

●●●●●
●●●

●

●●●●
●●●

●

●●●
●●●●

●

●
●
●
●●
●●●●

●
●●●●

●●●●
●
●

●●●●
●●

●
●

●

●●●●
●

●

●

●
●
●
●
●
●●●●

●●●
●

●

●

●
●●●

●●
●
●
●●●

●

●●●
●●
●

●●

●●●●●●
●

●●●●●
●

●

●

●●●●●

●

●

●
●
●●
●●
●●●●●

●
●
●

●

●
●

0 50 100 150 200 250

−1
.0

−0
.5

0.
0

0.
5

1.
0

CPO Change

Observation Index

D
el

ta
 C

PO 12
3
4567891011

12
13
14
15
16
17181920

2122
23
24

25

26
27
282930

3132
33343536

373839404142

43

4445
46
474849

50515253545556575859606162
63

6465666768697071
72

73

74757677
78798081

82
83

84

85

86

87888990919293949596979899100101102103104
105106107108109110111112

113114115
116117118119

120
121122123

124
125

126

127128129130131132133134

135

136137138139140141142

143
144145146

147148149150
151
152
153
154155156157158159160

161162163164165166167168169
170171

172173174175176177
178
179

180

181182183184
185

186

187

188189
190
191
192193194195196197198199200

201

202

203204205206207208209
210211212213214

215216217218219220
221222

223224225226227228
229
230231232233234235

236

237
238239240241242

243

244
245
246247248

249250251252253254255
256257

258
259
260261

Figure 24: Identification of Tampered Observations (typical)

Tampering Indicators To determine the experimental ability of these tests for overall tampering
detection, we built a model, MA, on the untampered version of the “ideology.data” data set. We

71

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.6 Experiments and
Results

then extracted alternate models, Mb, from a variety of versions of the “ideology.test” data drawn
from the same distribution as “ideology.data”. (For all experiments we used the version of the data
sets that used only the best two features.) The variants were:

Untampered: No change to “ideology.test”. We hope that here the PBF tests will indicate no
tampering.

Random: The random attack, with budgets of 1 through 12. The point of multiple budgets is to be
able to note when the attack first becomes evident. Random is a fairly incompetent attack,
and so we might be slow to detect the tampering.

CPO: The Conditional Predictive Ordinate Attack, budgets of 1 through 12. This is a fairly com-
petent attack, and so we expected to be able to detect it quickly.

SC: The Subtle Clustering attack, budgets of 1 through 12. This is nearly as effective as CPO, but
it is also not easily spotted via cross-validation assessment on the training data, as discussed
in Section 4.5. We were interested in whether this would increase the difficulty of spotting it
via PBF.

Table 12: PBF Comparison of Three Attacks on Ideology

Budget Random CPO SC
0 -0.19
1 -3.55 -4.17 -2.17
2 -5.11 -8.57 -4.77
3 -6.96 -12.21 -6.07
4 -11.44 -15.68 -5.99
5 -15.62 -18.03 -8.06
6 -17.43 -19.80 -10.13
7 -20.67 -20.77 -11.72
8 -23.00 -22.60 -13.70
9 -24.64 -24.12 -13.64

10 -24.26 -26.82 -13.33
11 -24.93 -28.10 -14.96
12 -26.65 -29.70 -16.57

Table 12 contains the results. To interpret the values, refer back to the log(Bab) column of
Figure 20. Some notes on interpretation:

• When there is no tampering, “Budget=0”, the PBF is -0.19, which close to 0 and anyhow
greater than -1, indicating only very weak support for tampering.

• With only a single data point tampered, both Random and CPO generate positive support for
tampering, and once two points had been tampered they both generated strong support for
tampering.

72

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.6 Experiments and
Results

• Further, at almost all budget levels, the absolute value of PBF for CPO was higher than for
Random, confirming our expectation that CPO is a more effective, a more noticeable, attack
than Random.

• With a budget of 1, SC generates only weak support, and with a budget of 2 it generates
positive support. SC requires a budget of 3 to register as strong support for tampering, and
in general had a much smaller absolute PBF than Random or CPO, indicating that lack of
effect on training-set cross validation translates into lack of impact on PBF.

Overall, it was surprisingly easy to spot tampering with the PBF test; even the most subtle attack
registered after only three data points were tampered with. Admittedly, with only 260 test points,
three data points are slightly more than 1% of the data, but still, this seems a usefully sensitive test.

Finally, note that Table 12 compares only an untampered dataset to datasets with various levels
of tampering. This is certainly the operational environment most likely to be interesting, but for a
sense of the general robustness of the test, one could compare datasets corrupted by various kinds
and levels of tampering. And easily so, in our case, as those results are generated as a side effect
of the primary comparison.

Consider the heat map in Figure 25a, which depicts the pairwise comparison between the level
of tampering on each of the corrupted datasets. The darker the color (red or blue) the higher the
ratio of their conditional densities. Moving down the last column (or across the first row) provides
the same results depicted in Table 12. Entries with very light color indicated tampering that is
harder to detect, with white indicating that no tampering could be detected.

Similarly, the heat map in Figure 25b depicts the pairwise comparison between the level of
tampering on each of the datasets using the Wasserstein or Mallows Distance as an indication of
tampering. The Mallows Distance has been normalized to the interval {0,1}. The darker the blue
color the easier it is to detect a difference in the labels. Moving down the last column provides a
summary of tampering detection relative to the test data. Entries with a very light color indicated
tampering is harder to detect, with white indicating that no tampering could be detected. As can
be seen, all tampering relative to the test data was detected.

Mallow’s Distance provides a somewhat more sensitive measure of tampering than PBF. This
sensitivity is evidenced in comparing the two heat maps. Consider the top left group of cells in
Figures 25b and 25a. The broad diagonal of white subcells indicate that PBF has difficulty in iden-
tifying an increase in the level of tampering between two data sets. (e.g. itf-not-best-random09.data
versus itf-not-best-random10.data). Examining the same area on Figure 25b indicates that the met-
ric based on Mallows distance does however capture the increase in tampering.

The grey cells in Figure 25a, indicate comparisons where there are numerical difficulties in cal-
culating the pseudo-Bayes factor; it becomes overwhelmed by the differences between the models.
Alternatively, as depicted in Figure 25b, the Mallows metric does not experience these issues.

73

7 QUANTIFYING PARANOIA FOR LABEL TAMPERING ATTACKS 7.6 Experiments and
Results

itf−best−cpo−50−descending01.data
itf−best−cpo−50−descending02.data
itf−best−cpo−50−descending03.data
itf−best−cpo−50−descending04.data
itf−best−cpo−50−descending05.data
itf−best−cpo−50−descending06.data
itf−best−cpo−50−descending07.data
itf−best−cpo−50−descending08.data
itf−best−cpo−50−descending09.data
itf−best−cpo−50−descending10.data
itf−best−cpo−50−descending11.data
itf−best−cpo−50−descending12.data

itf−best−sc01.data
itf−best−sc02.data
itf−best−sc03.data
itf−best−sc04.data
itf−best−sc05.data
itf−best−sc06.data
itf−best−sc07.data
itf−best−sc08.data
itf−best−sc09.data
itf−best−sc10.data
itf−best−sc11.data
itf−best−sc12.data

itf−not−best−random01.data
itf−not−best−random02.data
itf−not−best−random03.data
itf−not−best−random04.data
itf−not−best−random05.data
itf−not−best−random06.data
itf−not−best−random07.data
itf−not−best−random08.data
itf−not−best−random09.data
itf−not−best−random10.data
itf−not−best−random11.data
itf−not−best−random12.data

itf.test

itf−best−cpo−50−descending01.dataitf−best−cpo−50−descending02.dataitf−best−cpo−50−descending03.dataitf−best−cpo−50−descending04.dataitf−best−cpo−50−descending05.dataitf−best−cpo−50−descending06.dataitf−best−cpo−50−descending07.dataitf−best−cpo−50−descending08.dataitf−best−cpo−50−descending09.dataitf−best−cpo−50−descending10.dataitf−best−cpo−50−descending11.dataitf−best−cpo−50−descending12.dataitf−best−sc01.dataitf−best−sc02.dataitf−best−sc03.dataitf−best−sc04.dataitf−best−sc05.dataitf−best−sc06.dataitf−best−sc07.dataitf−best−sc08.dataitf−best−sc09.dataitf−best−sc10.dataitf−best−sc11.dataitf−best−sc12.dataitf−not−best−random01.dataitf−not−best−random02.dataitf−not−best−random03.dataitf−not−best−random04.dataitf−not−best−random05.dataitf−not−best−random06.dataitf−not−best−random07.dataitf−not−best−random08.dataitf−not−best−random09.dataitf−not−best−random10.dataitf−not−best−random11.dataitf−not−best−random12.dataitf.test
Var1

Va
r2

−20
−10
0
10
20

value

(a) Pseudo-Bayes Factor Heatmap

itf−best−cpo−50−descending01.data
itf−best−cpo−50−descending02.data
itf−best−cpo−50−descending03.data
itf−best−cpo−50−descending04.data
itf−best−cpo−50−descending05.data
itf−best−cpo−50−descending06.data
itf−best−cpo−50−descending07.data
itf−best−cpo−50−descending08.data
itf−best−cpo−50−descending09.data
itf−best−cpo−50−descending10.data
itf−best−cpo−50−descending11.data
itf−best−cpo−50−descending12.data

itf−best−sc01.data
itf−best−sc02.data
itf−best−sc03.data
itf−best−sc04.data
itf−best−sc05.data
itf−best−sc06.data
itf−best−sc07.data
itf−best−sc08.data
itf−best−sc09.data
itf−best−sc10.data
itf−best−sc11.data
itf−best−sc12.data

itf−not−best−random01.data
itf−not−best−random02.data
itf−not−best−random03.data
itf−not−best−random04.data
itf−not−best−random05.data
itf−not−best−random06.data
itf−not−best−random07.data
itf−not−best−random08.data
itf−not−best−random09.data
itf−not−best−random10.data
itf−not−best−random11.data
itf−not−best−random12.data

itf.test

itf−best−cpo−50−descending01.dataitf−best−cpo−50−descending02.dataitf−best−cpo−50−descending03.dataitf−best−cpo−50−descending04.dataitf−best−cpo−50−descending05.dataitf−best−cpo−50−descending06.dataitf−best−cpo−50−descending07.dataitf−best−cpo−50−descending08.dataitf−best−cpo−50−descending09.dataitf−best−cpo−50−descending10.dataitf−best−cpo−50−descending11.dataitf−best−cpo−50−descending12.dataitf−best−sc01.dataitf−best−sc02.dataitf−best−sc03.dataitf−best−sc04.dataitf−best−sc05.dataitf−best−sc06.dataitf−best−sc07.dataitf−best−sc08.dataitf−best−sc09.dataitf−best−sc10.dataitf−best−sc11.dataitf−best−sc12.dataitf−not−best−random01.dataitf−not−best−random02.dataitf−not−best−random03.dataitf−not−best−random04.dataitf−not−best−random05.dataitf−not−best−random06.dataitf−not−best−random07.dataitf−not−best−random08.dataitf−not−best−random09.dataitf−not−best−random10.dataitf−not−best−random11.dataitf−not−best−random12.dataitf.test
Var1

Va
r2

0.00

0.25

0.50

0.75

1.00
value

(b) Scaled Mallows Distance Heatmap

Figure 25: Difference Detection: All vs All
74

8 CLUSTER TAMPERING VIA DATA MINES

8 Cluster Tampering Via Data Mines

8.1 Introduction

Supervised vs Unsupervised Methods in CADA

In prior chapters we have primarily focused on supervised machine learning, partly because it
permits crisp accuracy metrics that allow a quantitative assessment of the effect of an adversary’s
tampering with one’s data. Clustering is an important and widely used form of unsupervised
machine learning, and so we investigated it as well in the CADA project, for completeness’ sake.
Since supervised and unsupervised methods are so different, we expected the CADA investigations
thereof to be fairly distinct as well. We were surprised, then, to find a substantive amount of
commonality in ideas and algorithms; we shall even end this section with a demonstration that
remediation via ensembles of outlier methods is applicable and useful even here.

Clustering, Plagiarism, Attacks, Defense: A Summary

Clustering is a useful tool for analyzing unlabeled data. It can be used to find plagiarized Android
apps [?], to classify network traffic [?], to identify similar queries at search engines [?], and for
many other applications. Rather than cluster “controlled data”, clustering is often applied to “found
data”. In the former case, the data is collected from physical measurements such as gene expression
for gene analysis [?]. In the latter case, the origin and integrity of the data is unclear. Depending
on the purpose of the clustering, an adversary may tamper with the data in order to subvert the
clustering algorithm.

In the case of plagiarized Android applications (apps), a plagiarist may seek to subvert the
clustering algorithm in at least two ways. First, she can try to manipulate the apps that she copies
in such a way that the copied app is no longer similar to the original app. We call this form of attack
an evasion attack. For example, spam emails will often copy characteristics of normal emails to try
to avoid detection. Second, she may seek to manipulate the cluster structure by adding specifically
crafted apps (which we call data mines). This form of attack may also allow a plagiarizer to
evade detection, however, we explore how it may be used to poison the clustering to undermine
confidence in the tool. For this reason, we call this form of attack a confidence attack.

In this section, we explore and evaluate the effectiveness of the proposed confidence attack.
First, we describe how an attacker may select an ordering of clusters to merge. In a real-world
scenario, we assume that an attacker would have a specific goal, however, we evaluate many or-
derings to develop intuition about possible attacks and evaluate which degrades the accuracy of
plagiarism detection the fastest. Then, we discuss how bridges can be generated using data mines
to arbitrarily merge clusters. These bridges span the gaps between clusters with sufficient density
to lead the clustering algorithm to interpret the data as a single cluster. Next, we measure how the
quality of the clustering degrades as a function of the number of data mines an attacker creates.

75

8 CLUSTER TAMPERING VIA DATA MINES 8.2 Background

Finally, we propose an additional remediation phase that the defender can use to prune data mines
from her dataset based on outlier measurements.

Our contributions are as follows:

• We present a methodology for selecting and then merging arbitrary clusters.

• We evaluate the effectiveness of various attacks in a real-world scenario.

• We propose metrics for attacker and defender cost and measure the trade-offs.

• We find the clustering algorithm DBSCAN alone is insufficient for adversarial settings.

• We propose a remediation methodology to remove data mines from a dataset based on outlier
measurements.

8.2 Background

DBSCAN

DBSCAN [?] is a density-based clustering algorithm for large spatial databases. It clusters points
using two parameters: T and MinPts. T is the distance threshold that determines the size of each
point’s neighborhood. MinPts is the number of neighbors a point must have in its T -neighborhood
in order to be considered a core point. A cluster is defined as all the points that are density-
reachable from a core point p. In order for a point, q, to be density-reachable from core point p, it
must either be in the T -neighborhood of p or there must be a series of core points p0, . . . , pn such
that p0 is in the T -neighborhood of p, pi is in the T -neighborhood of pi �1 (0 < i <= n), and q is
in the T -neighborhood of pn.

DBSCAN is an attractive clustering algorithm for a number of reasons. First, it does not require
the number of clusters to be specified ahead of time. Second, combined with locality sensitive
hashing (LSH) [?] that can approximately identify the nearest-neighbors of a point in logarithmic
time, DBSCAN can cluster all points in linearithmic time.

AnDarwin

AnDarwin [?] is a pre-existing tool developed to detected cloned Android apps. Android apps are
distributed through centralized markets, such as Google Play. The majority of apps [?] are available
for free but include ads for monetization. Unfortunately for app developers, apps are often cloned
by plagiarists who alter the app to redirect the ad revenue stream into their own accounts [?].

AnDarwin detects cloned apps on a large scale. It represents each app as a set of features as
follows: 1) it converts Android’s DEX bytecode to Java bytecode, 2) it uses WALA [?] to compute

76

8 CLUSTER TAMPERING VIA DATA MINES 8.2 Background

program dependency graphs (PDGs) for methods found within the app, 3) it encodes the PDGs as
semantic vectors that it clusters to form features and, finally, 4) it represents each app as a set of
binary features where a feature, f , is set if an app contains a PDG whose semantic vector clusters
into cluster f . An overview of this process is shown in Figure 26. AnDarwin uses MinHash [?, ?]
to identify the T -neighborhoods of individual apps (this is a LSH algorithm that allows AnDarwin
to avoid computing a pairwise similarity matrix). Finally, to identify clusters of similar apps, it
assigns each app to its own cluster and then processes the pairs of apps identified by MinHash (the
individual app and each of its neighbors) and merges the clusters containing each of the pair of
points. Clusters of a single app are ignored.

Figure 26: Overview of how AnDarwin represents Android apps as a set of features. First, it
extracts program dependency graphs (PDGs) from apps, such as the one shown in the top left. It
then computes a semantic vector for the graph which is a frequency vector for the different node
types within the PDG. It then clusters the semantic vectors for all PDGs from all apps and treats
each cluster of semantic vectors as a feature. Finally, it represents each app as a set of features
based on which PDGs the app contains.

Although not stated in the original work, this process for building clusters is equivalent to
DBSCAN with a MinPts value of 2, where every point with at least one neighbor is a core point.
In the original DBSCAN paper, the authors suggest using values for T and MinPts that represent
the “thinnest” cluster that should not be considered noise. This is problematic for AnDarwin, as
AnDarwin’s goal is to find app plagiarism which could consist of just one original app and one
(similar) plagiarized app. If AnDarwin uses a value larger than MinPts = 2, then AnDarwin may
miss many instances of app plagiarism.

77

8 CLUSTER TAMPERING VIA DATA MINES 8.3 Related Work

8.3 Related Work

There have been several works that study the affects of adversarial input on machine learning.
In a supervised context [?, ?], the problem is often analyzed using game theory. Specifically,
these works seek to find an equilibrium between the defender who uses a classifier and one or
more attackers. In this work, we focus on unsupervised machine learning. Others have looked at
adversarial input on unsupervised machine learning. Notably, Dutrisac et al. [?], outline a similar
attack as the one outlined in this paper – the process of bridging the gap between two clusters to
merge them. In this work, we explore this process using DBSCAN as the clustering algorithm. We
also formalize the attacker cost based on how many points she must generate in order to bridge
gaps. Finally, we explore how effective these attacks can be using a dataset and tool with real-world
applications and whether the attacks can be remediated with outlier measurements.

Biggio et al. [?] present a framework for performing security evaluations of clustering algo-
rithms. They develop an adversarial clustering theory that includes modeling the attackers goals,
knowledge, capabilities, and strategy. They explore two forms of attacks: cluster poisoning attacks
and obfuscation attacks. These are analogous to the confidence and evasion attacks described in
the introduction. To demonstrate their framework, Biggio et al. evaluate single-linkage clustering.
Specifically, they show how an attacker can use a small number of points, heuristically chosen, as
bridges to poison the clustering. In this work, we present an equation for the number of points
required to bridge two clusters for DBSCAN and perform an extensive evaluation of the attacks
against AnDarwin. Additionally, we show that the attacks apply to density-based clustering algo-
rithms.

DBSCAN’s clustering algorithm is similar to single linkage clustering that is used for agglom-
erative clustering. A well-known issue with single linkage clustering is the chaining phenomenon.
The chaining phenomenon occurs because the algorithm merges two clusters even when there is
only a single pair of points that are similar between them. We exploit this weakness when build-
ing bridges to span the gap between clusters. Other linkage methods, such as complete-linkage
clustering, avoid this phenomenon but may create many smaller clusters.

There have been several algorithms proposed to improve on the original DBSCAN algorithms.
Notably, C-DBSCAN [?] adds constraints (Must-Link and Cannot-Link) to the original DBSCAN
algorithm. These constraints improve on cases where DBSCAN performs poorly: if clusters
are partially overlapping, connected by bridges, or have very different densities. Constraints are
formed using domain knowledge although Ruiz et al. found that even random constraints can im-
prove the clustering performance. The C-DBSCAN work provides an interesting defense against
the attacks described in the current paper, however, it requires human insight to build the con-
straints.

8.4 Threat Model

We assume that the attacker can generate arbitrary points in feature space and that the attacker can
inject those points into our dataset. For example, in the case of the Android apps, the attacker

78

8 CLUSTER TAMPERING VIA DATA MINES 8.5 Methodology

could generate apps with arbitrary feature sets by copying methods from apps whose features the
attacker wishes to include into her app. Since AnDarwin does not perform any dead code analysis,
each of these injected methods is treated as a regular feature regardless of whether it is needed for
app functionality or not. This exploits the semantic gap between program analysis and program
execution [?]. In order to get her apps into our dataset, the attacker could create an account on a
third-party Android market and upload her apps there for us to crawl.

In terms of Biggio et al. [?], the adversary has perfect knowledge. The attacker knows the
complete dataset, the feature space, the algorithm, and the algorithm’s parameters. We discuss the
feasibility of this attacker model in Section 8.8.

Though our methodology applies to all tools based on DBSCAN, to be concrete in the current
work we use AnDarwin as a specific application of DBSCAN. This allows us to more concretely
discuss the generation of the data mines used to merge clusters. Specifically, we assume that points
represent a set of binary features and that points are compared using their Jaccard similarity.

In this work, we explore a confidence attack that an attacker might use against a clustering
tool in order to undermine the defender’s confidence in the tool and underlying algorithms. If the
defender’s confidence is undermined, she may not trust the tool’s results and/or abandon use of the
tool completely. To provide a concrete objective for the attacker, we investigate how the attacker’s
injected points degrades the accuracy of plagiarism detection. Specifically, for a given clustering,
we can compute whether an app is an original or plagiarizing (based on methodology from Gibler
et al. [?]) and compare that label to the label for the same app in the untampered clustering. From
these labelings, we can compute the overall accuracy of plagiarism detection in the presence of
some number of cluster merges.

8.5 Methodology

In this section, we describe two critical components of how an attacker would carry out her attack:
1) the order in which she picks clusters to merge, and 2) the process of generating data mines that
will cause DBSCAN to merge her selected clusters. Before describing the mechanisms, we first
outline how we identify which apps are originals and which are plagiarizing based on a clustering
and then describe the metrics we will use to measure how much the attacker’s cluster merges
degrade the clustering. Finally, we describe how we remove data mines from the dataset based on
outlier measurements.

Identifying Plagiarism

In order to identify plagiarizing apps, we leverage the owner merging methodology from Gibler et
al. [?]. Specifically, we seek to partition apps in a given cluster based on the owner that published
the app. We determine ownership in two ways: 1) the developer account name that is associated
with the app when it was crawled, and 2) the public key fingerprint for the private key that the
owner used to cryptographically sign the app. If two apps share either of these two identifiers, we

79

8 CLUSTER TAMPERING VIA DATA MINES 8.5 Methodology

consider them to be from the same owner. Once we have partitioned a cluster into apps from the
same owner, we then assume that the owner with the largest number of apps is the original owner
and that all others are plagiarizing. While this may not always be accurate, it does ensure that we
do not overestimate the number of plagiarizing apps.

Clustering Performance

In order to quantify how much the clustering degrades as the attacker merges clusters, we compute
four relative performance metrics for the clusterings. These performance metrics are all supervised;
they compare the clustering after some number of merges to the original clustering. The first three
metrics are generic clustering comparison metrics while the last is application-specific:

• Homogeneity: measures the number of clusters in the new clustering that have all points
from the same cluster in the original clustering.

• Adjusted Rand Index: measures the difference between observed and expected values in the
contingency matrix. The contingency matrix measures the intersection of clusters between
two clusterings.

• Adjusted Mutual Info: also uses the contingency matrix but measures the dependence be-
tween cells of the matrix using mutual information. This relates to the probability of knowing
the structure of one clustering given the other.

• Plagiarism detection accuracy: we compute a standard confusion matrix for the original or
plagiarizing labels given to apps as described the previous section. We then compute the
accuracy of plagiarism detection using the sum of the diagonal of the matrix divided by the
sum of all cells in the matrix.

The three standard clustering comparison metrics are calculated using scikit-learn [?]. All four
metrics have 1.0 as a perfect score, and make no assumptions about the cluster structure. Homo-
geneity and plagiarism detection accuracy are not normalized with respect to random labeling.

Merge Ordering Algorithms

An attacker performing a confidence attack may choose any order to merge clusters. As stated in
Section 8.4, we assume that the attacker wishes to optimally degrade the accuracy of plagiarism
detection. Therefore, we propose the following merge algorithms to develop intuition about how
different orderings may affect the degradation of the clustering quality:

• Random: Cluster pairs are selected at random.

80

8 CLUSTER TAMPERING VIA DATA MINES 8.5 Methodology

• Nearest-neighbor: An initial seed cluster is chosen at random and then clusters are chosen
in order of decreasing similarity to the seed cluster.

• Cluster Similarity, Decreasing and Increasing: Cluster pairs are selected based on their
similarity. For decreasing, this will start by merging related clusters before merging unre-
lated clusters. Note: the similarity of clusters is computed as the minimum similarity of any
two points that span the clusters.

• Cluster Size, Decreasing and Increasing: Cluster pairs are selected based on the size of
the merged cluster they would create. For decreasing, this will start by merging the two
largest clusters. For increasing, this picks pairs such that the merge produces a cluster of the
smallest size possible (not including points to merge the two clusters).

• Original Size, Decreasing: Similar to the previous algorithms except instead of using the
size of the cluster, the algorithm uses the number of original apps in the cluster. Assuming
that the authors do not overlap between the clusters, this will cause the most original apps to
be labelled as plagiarizing at each stage of merging.

• Author Size, Decreasing: This algorithm starts by finding the author with the most apps
across all clusters and merging clusters containing all her apps first. Then, it proceeds to
merge in the remaining clusters from biggest to smallest, by cluster size.

• Greedy Pessimal - Accuracy: Find the two unmerged clusters that, when merged, degrade
the plagiarism detection accuracy the most. Repeat this process until all clusters have been
merged.

During the merge ordering algorithms, the similarity is not recomputed after each merger (even
though the data mines may influence unmerged clusters’ similarities). To ensure that the orderings
do not contain obvious redundant merges, the algorithms keep track of which clusters have been
merged and will skip pairs that have already been merged.

Due to the computational complexity, we do not try to evaluate all merge orderings. For each
of the above algorithms, there may be many merge orderings that can be produced. As a trivial
example, different random seeds will lead to completely different random merge orderings. For
many of the algorithms, the ordering is dependent on the way ties are broken. Instead of evaluating
all merge orderings, we take one ordering generated from each of the above algorithms as repre-
sentative of that type of attack. We anticipate that the greedy pessimal algorithm will degrade the
plagiarism detection accuracy the fastest, however, it may not produce an optimal ordering. We
leave exploring whether there are particularly pernicious merge orderings to future work.

Data mine generation

To merge two clusters, the adversary must change the dataset so that two previously distinct clusters
meet the criteria to be a single cluster (a core point in one cluster is density-reachable from the
other). She does this by generating a series of data mines between the two clusters that, to the

81

8 CLUSTER TAMPERING VIA DATA MINES 8.5 Methodology

DBSCAN algorithm, look like core points. Based on the DBSCAN algorithm, this will merge the
original two clusters. For now, assume that the MinPts parameter used by DBSCAN to determine
the minimum neighborhood size of a core point is 2. This effectively makes every point with at
least one neighbor a core point as points are in their own T -neighborhood.

Let pS and pT be two points, the start and target points, in different clusters that the attacker
wants to merge. In order to merge these clusters, she must generate a series of n � 1 (n will be
discussed below) data mines (p1, . . . , pn�1) such that:

8i 2 [1,n) : Dist(pi, pi+1) T (6)
Dist(pS, p1) T (7)
Dist(pn�1, pT) T (8)

For notational convenience, and without loss of generality, let p0 = pS and pn = pT . Then
Equation 6 can be rendered more compactly as:

8i 2 [0,n) : Dist(pi, pi+1) T, (9)

where Dist is an arbitrary distance function and T is the threshold used for DBSCAN to deter-
mine the neighborhood size. With a MinPts value of 2, this series of mines merges the two clusters
that p0 and pn were in, achieving the attacker’s goal.

Clearly, the number of data mines (n�1) an attacker must craft is proportional to T : the smaller
the value of T , the more mines the attacker must generate. If n were sufficiently large, say in the
thousands, we may discount this as a too noisy for real-world use. To determine if this is the case,
we analyze how the choice of T affects n. To minimize the number of data mines, an adversary
should create points such that:

8i 2 [0,n) : Dist(pi, pi+1) = T (10)

Figure 27a depicts the geometry of these relationships. In Section 8.4, we made the assump-
tion that instead of using the distance function, Dist, we are using a similarity function, Jaccard
Similarity (J), and that each point, pi, is represented by a set of features. Instead of letting T rep-
resenting a maximum distance for determining the neighborhood size, let it represent a minimum
similarity for the same purpose. Further, we make the worst case (for the attacker) assumption that
the two points to be merged have completely disjoint feature sets. Then, the attacker can generate
each mine, pi, using a portion (x) of the features from pi�1 and adding a portion (1 � x) of the
features from pn:

82

8 CLUSTER TAMPERING VIA DATA MINES 8.5 Methodology

T T

pipi�1 pi+1

(a) Three-point Chain

T
p

T
p

T T

pipi�1pi�2 pi+1 pi+2

(b) Five-point Chain

Figure 27: Geometry for data mines. The three-point chain shows how to generate data mines
when MinPts 3 and the five-point chain shows how to generate data mines when MinPts = 5.

pi = xpi�1 +(1� x)pn (11)

Assuming that the adversary knows T , and that p0 and pn are approximately the same size
(which means that |pi�1|= |pn| for all i), x will depend how dissimilar the intermediate data mines
can be, which is a function of T :

J(pi�1, pi) =
pi�1 \ (xpi�1 +(1� x)pn)

pi�1 [(xpi�1 +(1� x)pn)
(12)

=
|xpi�1|

|pi�1|+ |(1� x)pn|
(13)

=
x

2� x
= T (14)

) x =
2T

T +1
(15)

Then, the total number of samples needed to generate pn using Equation 11 is determined by
the number of times a portion of pn needs to be added to the original starting point to include all
the features of pn:

UBAC(T) =
1

1� x
�1 (16)

=
1

1� 2T
1+T

�1 (17)

=
1+T
1�T

�1 (18)

83

8 CLUSTER TAMPERING VIA DATA MINES 8.5 Methodology

This equation represents an upper bound for the attacker cost (UBAC) since we assumed that
the two points have completely disjoint feature sets. Using the equation, for a threshold of T = 1

2 ,
an attacker must generate 2 data mines to merge target points p0 and p3. For T = 9

10 , 18 data mines
must be created.

Removing Assumption: “Similar Sizes”

During the upper bound analysis, we made the assumption that the two target points, p0 and pn,
had roughly the same number of features. However, if the points had drastically different numbers
of features, the adversary would have to first generate an extra series of points to scale the smaller
point’s feature set to a similar size as the larger point. Then, she may proceed using the same
approach outlined above. The process of scaling up the smaller point requires creating points in
the following manner:

pi = pi�1 + xi pn (19)

Where xi represents a portion of the features in pn. In this case, xi must be selected based on T
and the relative sizes of pn and pi�1:

J(pi�1, pi) =
pi�1 \ (pi�1 + xi pn)

pi�1 [(pi�1 + xi pn)
(20)

=
|pi�1|

|pi�1|+ |xi pn|
= T (21)

) xi =
(1�T)|pi�1|

T |pn|
(22)

Unlike Equation 15, xi is dependent on the size of pi�1. This means that as we scale the original
(and smaller) point, p0, we can add larger and larger portions of pn to the next mine. In fact, the
total number of mines to scale p0 to the same size as pn is logarithmic in the size of pn

p0
. The base

of the logarithm is 1
T as the portion of pn that can be used for pi is inversely dependent on the

similarity threshold.

Removing Assumption: “MinPts = 2”

During the analysis, we made the assumption that MinPts = 2. This effectively made every point
a core point which simplified the algorithm to generate data mines. In fact, the original algorithm
works for MinPts values 2 and 3 (see Figure 27a) since the point, pi, and its predecessor and
successor, pi�1 and pi+1, are in the T -neighborhood of pi.

84

8 CLUSTER TAMPERING VIA DATA MINES 8.5 Methodology

Figure 27b depicts a geometry that the attacker can use to make each pi a core point when
MinPts is 5. For odd values of MinPts, the attacker can generate similar geometries with k =
MinPts�1

2 equally spaced points on both sides of pi. The distance between these points should be
such that:

8i 2 [k,n) : J(pi�k, pi) = T (23)

For the Jaccard distance, this means that:

8i 2 [0,n) : J(pi, pi+1) =
MinPts�1

2
p

T (24)

Then, the geometry of pi and its neighbors, pi�1 and pi+1, is the same as Figure 27a except
that T has been replaced with T 0 =

MinPts�1
2

p
T . Therefore, we can substitute T 0 into Equation 18

to determine the number of mines required to merge two clusters as a parameter of both T and
MinPts:

UBAC(T,MinPts) =
1+T 0

1�T 0 �1 (25)

=
1+

MinPts�1
2

p
T

1�
MinPts�1

2
p

T
�1 (26)

There is a caveat to the above approach: it requires that both p0 and pn be core points in their
respective clustering. This can be accounted for by adding enough data mines to the T -neighbors
of p0 and pn such that they are now core points. This requires at most 2⇤MinPts more data mines
be added. This additive constant is left out for simplicity.

Remediation

Before applying DBSCAN to her dataset, the defender has a chance to perform sanity checks on the
dataset to determine if any apps should be removed. We explore two ways that the attacker could
select apps for removal: 1) remove apps at random with some probability or 2) train a classifier to
identify apps to remove.

Random Remediation

In the previous section, we describe an optimal mechanism to merge clusters using the fewest data
mines possible. However, the bridges created by this approach are brittle – there is no redundancy

85

8 CLUSTER TAMPERING VIA DATA MINES 8.6 Dataset

in the chain so the omission of a single data mine nullifies the attack. A defender may leverage
this fact to make her clusters more robust against tampering. Specifically, she omit each app with
some probability, p. Then, the probability of unlinking a chain of n data mines is:

Pr[Preserving chain] = (1� p)n (27)
) Pr[Unlinking chain] = 1� (1� p)n (28)

Outlier-based Remediation

Outlier detection is commonly used when analyzing data to identify points that are characteris-
tically different from others in the dataset. For example, we can identify observations that are
statistically unlikely given the population’s mean and standard deviation. There are many different
outlier measurements, some are based on neighborhood relations, others are based on local den-
sities [?], and others are based on angles between points [?]. Since data mines are constructed to
minimally span the gaps between clusters, we hypothesize that outlier measurements can identify
these points. Rather than rely on a single outlier measurement to predict whether an app is a data
mine or not, we instead propose a supervised approach using an ensemble of outlier measures.
Specifically, we propose computing outlier measurements on a data set that we have tampered
with, training a classifier to identify the data mines we injected, and then applying the classifier
to data sets that may have been tampered with by an adversary. For our initial experiments, we
compute the following outlier measurements for each point to use as features for our classifier:

• The number of neighbors in the T
1
4 , T

1
2 , T , T 2, T 3 neighborhoods, where T is the DBSCAN

clustering threshold.

• The angle between the two nearest-neighbors.

• The variance in the angle between all pairs of points in the same cluster (similar to the
Angle-base outlier factor [?]).

In general, outlier measurements can be fairly computationally expensive, so we select measure-
ments that are tractable for our target data set. However, we can easily add other outlier measure-
ments to our ensemble with only the additional computational cost.

8.6 Dataset

The full dataset used for AnDarwin [?] consists of 265,359 apps crawled from 17 Android mar-
kets. From those apps, AnDarwin extracted a total of 90,144,000 semantic vectors which it then
clustered into 2,952,245 features. AnDarwin clustered the apps into 28,495 clusters of which 4,679

86

8 CLUSTER TAMPERING VIA DATA MINES 8.7 Evaluation

clusters contain apps from more than one owner. Ownership is determined using the methodology
described in Section 8.5.

We develop our attacks using two subsets of the full dataset. The first (DS0) is 273 clusters
selected at random from the 28,495 clusters identified by AnDarwin. The second (DS1) is the
4,679 clusters that AnDarwin identified as having apps from more than one owner. A breakdown
of the two datasets is shown in Table 13. We note that we were unable to precisely replicate the
original results of AnDarwin: we identified 3,705 multi-owner clusters in DS1. We hypothesize that
this is due to our list of developer accounts and signing keys being more complete (ours included
several more months of crawling).

DS0 DS1
Apps 1,394 29,788
Clusters 273 4,679
Single-Owner Clusters 229 974
Multi-Owner Clusters 44 3,705
Plagiarizing Apps 196 12,452

Table 13: Statistics for the two experimental datasets based on subsets of the AnDarwin clusters.

8.7 Evaluation

In this section, we evaluate the effectiveness of the confidence attack. Specifically, we generate a
series of cluster merges using each of the ordering algorithms (Section 8.5) and then merge clusters
by generating data mines (Section 8.5). For the sake of thoroughness, we evaluate the effectiveness
of these attacks to “completion,” when the attacker has merged all clusters into a single cluster. In
reality, an attacker would likely not perform such an attack and would instead have a budget on the
number of data mines or a specific goal (e.g. merge clusters X , Y , and Z).

First, we look at the number of data mines required to perform the attack to “completion.”
Then, we evaluate how the clustering degrades using our clustering performance metrics. Next,
we perform an analysis to detect inadvertent merges. Then, we evaluate a potential defense against
this attack: increasing T and MinPts, and evaluate the cost to both the defender and the attacker.
Finally, we look at two ways to remediate the clusters and explore how well they recover the
original plagiarism detection accuracy.

Data Mines

The number of data mines required to merge all the clusters into a single cluster for each of the
merge ordering algorithms is shown in Table 14. This required a total of 272 and 4,678 merges
for DS0 and DS1, respectively. Interestingly, the number of data mines is quite similar across all
algorithms except for Decreasing Cluster Similarity which required approximately 35% more data
mines than the other algorithms. We hypothesize that this is because most clusters are pairwise

87

8 CLUSTER TAMPERING VIA DATA MINES 8.7 Evaluation

dissimilar but some clusters may have apps that share a few features. This non-zero similarity will
cause these cluster pairs to be merged before cluster pairs with no overlap, even if the apps in each
cluster are drastically different sizes. This leads to more scaling data mines overall.

Algorithm DS0 DS1
Cluster Sim., Decreasing 1,145 20,363
Cluster Sim., Increasing 1,100 14,454
Random 909 16,010
Cluster Size, Decreasing 869 15,574
Original Size, Decreasing 869 14,780
Author Size, Decreasing 866 15,781
Cluster Size, Increasing 840 15,574
G.P. Accuracy 830 N/A
Nearest-neighbor 818 15,085

Table 14: The number of data mines to merge all clusters into a single cluster (“completion”).

Interestingly, the number of data mines required to merge all clusters is more than half the
number of apps in the original dataset. This means that the attacker has to inject a significant num-
ber of mines relative to the size of the original dataset in order to merge all clusters to completion.
However, the number of data mines required is not a function of the number of apps in the dataset;
it is a function of the number of clusters. Using Equation 18 and the DBSCAN parameters of
T = 0.5 and MinPts = 2, the number of mines to required to merge two arbitrary clusters is 2.
Therefore, to merge the 273 clusters (DS0), a total of 2 ⇤ 272 data mines should be needed. The
discrepancy between the theoretical and actual values is due to the fact that not all apps have the
same number of features. As a result, additional mines are required (as described in Section 8.5)
to match up the apps’ feature set sizes, increasing the total number of mines to merge two clusters.

Clustering Degradation

In Figure 28, we plot the values of the clustering performances metrics described in Section 8.5
for DS0. Figure 29 shows the same plots for DS1. The metrics compare the clustering after some
number of data mines have been added to the original clustering. Each metric has 1.0 as a perfect
score. We can make a number of interesting observations about these plots:

First, the relative ordering of merge algorithms is largely consistent across the generic cluster-
ing comparison metrics. Decreasing Cluster Size and Decreasing Original Size tend to do the best
while Increasing Cluster Size and Random do the worst, from the attacker’s perspective. These
metrics are all roughly based on the number of points that are clustered correctly, a property which
degrades the most quickly if the larger clusters are merged first.

Second, the results for the application-specific metric, the plagiarism detection accuracy, are
mostly consistent with the merge algorithm effectiveness as determined by the generic clustering
comparison metrics. Noticeably, the Greedy Pessimal algorithm that merges the adversary’s best

88

8 CLUSTER TAMPERING VIA DATA MINES 8.7 Evaluation

(a) Homogeneity (b) Adjusted Rand Index

(c) Adjusted Mutual Info (d) Plagiarism Detection Accuracy

Figure 28: Cluster degradation plots for DS0. These show how the four clustering performance
metrics degrade as a function of the number of data mines the attacker has injected into the dataset.
From an attacker’s perspective, algorithms with less area under the curve are better since they drop
the clustering performance quicker.

pair at each stage of merging is only just more effective than the Decreasing Cluster and Author
Size algorithms. Given it’s computational complexity, we do not compute the Greedy Pessimal
merge order for DS1 but we expect it to be similar to the Decreasing Cluster Size algorithm.

Third, increasing similarity and nearest neighbors have near-identical performance. This is
due to a majority of the apps being mutually dissimilar. If we select a cluster at random as the
seed cluster and merge in order of it’s nearest neighbors, we may find a few similar clusters but
the majority will be dissimilar. Therefore, the majority of pairs in both increasing similarity and
nearest neighbors will be dissimilar. Since we order the clusters for processing in the same way
each time, we produce near identical cluster merging orders.

Fourth, the Adjusted Rand Index metric seems to be the most sensitive to the cluster poisoning.
After only a few hundred mines for the big to small merge ordering, the metric drops to close
to zero while the other metrics remain above 0.8. This presents an opportunity for the defender
to quickly detect cluster poisoning. If the defender were performing incremental clustering using
DBSCAN over a period of time, she could compare today’s clustering to previous clusterings to
see how much they differ. If the adversary acts too quickly, a large drop in the Adjusted Rand
Index could alert the defender.

Finally, the plagiarism detection accuracy for DS1 only degrades to around 50% accuracy, de-
spite all the clusters being merged. When we manually investigated the “original” apps in the final
cluster that were from the same author (Section 8.5), we found several prolific plagiarizers. Specif-
ically, we found seven developers with more than 100 apps each (the most was 798 apps). These

89

8 CLUSTER TAMPERING VIA DATA MINES 8.7 Evaluation

(a) Homogeneity (b) Adjusted Rand Index

(c) Adjusted Mutual Info (d) Plagiarism Detection Accuracy

Figure 29: Cluster degradation plots for DS1. These show how the four clustering performance
metrics degrade as a function of the number of data mines the attacker has injected into the dataset.
From an attacker’s perspective, algorithms with less area under the curve are better since they drop
the clustering performance quicker.

are likely plagiarizers who downloaded as many apps as possible and uploaded the apps to their
own accounts. These prolific plagiarizers, which led to a prolific merged author, also explain why
the plots for the Author size merge algorithm have two phases: the many apps from the prolific
author are spread across many clusters initially.

Inadvertent Merges

In our implementation of the attacks, we split the stages of merge ordering and data mine gener-
ation into two separate phases. We compute the pairwise similarity matrix for the points and the
clustering before running the merge ordering algorithms but we do not update the matrix or rerun
the clustering after each data mine is added. This could lead to inadvertent merges where, when
merging two clusters, some of our data mines cause a third or more cluster to be merged in with
the two that we intended to merge and could cause us to “overspend” as an attacker.

Rather than merge the two stages of the attack, we instead post-process a pairwise similarity
matrix that contains all the original points and the data mines. First, we record the number of
clusters found when clustering the original points. Then, we add a set of data mines forming a
bridge to the matrix, recompute the clustering, and record the number of clusters. We repeat this
process for each of the bridges. Each bridge should merge exactly two clusters so the number of
clusters should decrease by one for each bridge added. If the number of clusters decreases by more
than one, an inadvertent merge has occurred.

90

8 CLUSTER TAMPERING VIA DATA MINES 8.7 Evaluation

We ran the methodology described above on all the merge algorithms for DS0 and found no
inadvertent merges. For DS1, there was one inadvertent merge for the Increasing Cluster Size
ordering algorithm. Figure 30 compares the expected number of clusters vs the observed number
of clusters for the ordering algorithm. Here, we can see there was one inadvertent merge around
the 1,400th merge and that it was corrected after about 3,000 merges when the algorithm tried to
merge a cluster that had already been inadvertently merged.

Figure 30: Inadvertent merge from the Increasing Cluster Size ordering algorithm for DS1. The
merge happened after around the 1,400th merge and was corrected when the inadvertently merge
cluster was supposed to be merged with a cluster that it was already merged with.

The chosen feature space for Android apps is very sparse so inadvertent merges are unlikely
to occur. For DBSCAN-based tools in a more dense feature space, inadvertent merges may help
reduce an attacker’s cost.

Attacker and Defender Costs

In this section, we explore one possible defense against the cluster merging attack: increasing T
and MinPts. By increasing T and MinPts, the defender can increase the number of data mines the
attacker must generate in order to merge two clusters (Equation 26). This increases the cost to the
attacker as she will have to generate many more data mines to bridge clusters. However, this is not
without cost to the defender. If the defender increases MinPts from 2, she will no longer be able to
detect apps that have been copied just once. Drastically increasing MinPts will allow her to only
detect frequently copied apps. If the defender increases T , she may miss some copies. A defender
must balance her own cost against that of the attacker if she is to use this as her defense.

In Table 15, we show the attacker’s cost (Equation 26) computed for different values of T
and MinPts. From this table, we can see that the attacker cost does not increase when MinPts
is increased from 2 to 3. This is because the chaining geometry always creates mines such that

91

8 CLUSTER TAMPERING VIA DATA MINES 8.7 Evaluation

the number of points in the T -neighborhood of a point is 3. At higher values of T and MinPts,
the attacker cost is relatively high; she must generate more than 50 points in order to merge two
clusters.

MinPts
T 2 3 5 11 19

0.5 2.0 2.0 4.828 13.45 24.98
0.6 3.0 3.0 6.873 18.59 34.25
0.7 4.667 4.667 10.24 27.05 49.47
0.8 8.0 8.0 16.94 43.82 79.67
0.9 18.0 18.0 36.97 93.92 169.8

Table 15: The attacker’s cost for various values of T and MinPts, as measured by the number of
points required to merge two clusters (Equation 26).

In Table 16, we show the defender’s cost computed for different values of T and MinPts for
DS0. A goal of AnDarwin is to find plagiarized Android apps. Therefore, we measure the defender
cost as the number of apps that are no longer detected as plagiarizing with the new parameter
values. For this reason, the cost is zero when T = 0.5 and MinPts = 2. Originally, we classify
196 of the 1,394 apps in DS0 as plagiarizing. With only minor increases in T and MinPts, we can
see that the number of plagiarizing apps drops by about 10% (see Section 8.8 for a discussion of
whether all these apps are indeed plagiarizing in the first place). Table 17 shows the defender’s
cost for DS1 where we originally classify 12,452 of the 29,788 app as plagiarizing.

MinPts
T 2 3 5 11 19

0.5 N/A 14 28 62 70
0.6 12 25 42 75 81
0.7 39 53 69 92 93
0.8 52 63 75 92 93
0.9 137 146 159 174 174

Table 16: The defender’s cost for various values of T and MinPts, as measured by the number of
plagiarizing apps no longer detected as plagiarizing for DS0.

MinPts
T 2 3 5 11 19

0.5 N/A 1,126 2,939 5,652 7,521
0.6 1,874 3,045 4,792 7,182 8,817
0.7 3,747 4,927 6,554 8,612 9,862
0.8 5,670 6,863 8,257 9,738 10,745
0.9 7,538 8,660 9,713 10,724 11,265

Table 17: The defender’s cost for various values of T and MinPts, as measured by the number of
plagiarizing apps no longer detected as plagiarizing for DS1.

92

8 CLUSTER TAMPERING VIA DATA MINES 8.7 Evaluation

Finally, in Table 18, we compare the attacker’s and the defender’s costs for DS0. Specifically,
we compute the defender’s cost divided by the attacker’s cost:

Relcost(T,MinPts) =
Missed Plagiarism Detections

UBAC(T,MinPts)
(29)

When selecting T and MinPts, the defender wants to minimize this value while balancing her own
cost. If she selects T = 0.9 and MinPts = 19, she can minimize Relcost but she will only be able to
detect plagiarizing apps for apps that have at least 19 copies and that are all 90% similar. That is,
consulting Table 16, she will fail to find 174 plagiarizing apps.

MinPts
T 2 3 5 11 19

0.5 N/A 7.0 5.799 4.61 2.802
0.6 4.0 8.333 6.111 4.034 2.365
0.7 8.357 11.36 6.735 3.401 1.88
0.8 6.5 7.875 4.426 2.099 1.167
0.9 7.611 8.111 4.3 1.853 1.024

Table 18: Relcost(T,MinPts) at various levels of T and MinPts for DS0.

MinPts
T 2 3 5 11 19

0.5 N/A 563.0 608.687 420.222 301.065
0.6 624.667 1,015.0 697.223 386.271 257.457
0.7 802.929 1,055.79 639.764 318.39 199.342
0.8 708.75 857.875 487.303 222.219 134.869
0.9 418.778 481.111 262.7 114.187 66.3256

Table 19: Relcost(T,MinPts) at various levels of T and MinPts for DS1.

Based on this analysis, we find that increasing T and MinPts is an insufficient defense for
preventing a confidence attacks that seeks to poison the clustering.

Remediation

In order to test our proposed clustering remediations, we partition DS0 into two partitions: A) 700
apps forming 153 clusters and B) 694 apps forming 120 clusters. The partitioning was performed
randomly by cluster until the number of apps in each partition was approximately equal. In this
section, we explore how the proposed remediation methods change the plagiarism detection ac-
curacy after some number of merges. We generate mines using two different merge orderings:
random and decreasing original size. We select these two algorithms as they are representative of a
weak and strong adversary (when the adversary’s goal is to degrade plagiarism detection accuracy).

93

8 CLUSTER TAMPERING VIA DATA MINES 8.7 Evaluation

First, we tested the random remediation methodology using different levels of p, the probability
of excluding a given point, and varying the number of merges in the tampered data set. We tested p
values between 5% and 30%, inclusively, in 5% increments and specifically at 1%. We varied the
number of merges between 0 and 110, inclusively, in increments of 5 merges. We then compute
the plagiarism detection accuracy at each of these 161 values for both partitions of the dataset and
both merge algorithms. In Figure 31, we plot two columns from this table: the accuracy at 1% and
5%, for each of the partitions of the dataset.

(a) Partition A, Random. (b) Partition B, Random.

(c) Partition A, Decreasing Original Size. (d) Partition B, Decreasing Original Size.

Figure 31: The plagiarism detection accuracy with and without remediation on two partitions of
DS0. The top two plots show plagiarism detection accuracy when the adversary merges clusters
randomly, and the bottom show when she merges based on the number of original apps in the
cluster. The tampered curves show how accuracy degrades without remediation. For the outlier
remediation curve, the presumed number of merges in the training partition matched the actual
number of merges in the testing partition.

As we can see from the Figures, remediation by randomly removing points with some proba-
bility does not improve the plagiarism detection accuracy in most cases. Surprisingly, for partition
B, random remediation against the Decreasing Original Size merge algorithm does almost as well
as the outlier-based approach. This was a statistical anomaly, when we rerun the experiment 100
times with the same parameters, we only observed a similar plagiarism detection accuracy twice.
Interestingly, once a large number of clusters have been merged, the random remediation method-
ology may be marginally useful.

Next, we test our proposed outlier-based remediation approach. First, we compute outlier
measurements for apps in the training partition, varying the number of clusters that were merged
before computing the features. We then train a classifier with the presumed number of merges

94

8 CLUSTER TAMPERING VIA DATA MINES 8.8 Discussion

and test the classifier on the testing partition, varying the number of actual merges. We varied
the presumed number of merges between 5 and 110 and the actual number of merges between 0
and 110. In both cases, the ranges were inclusive and we computed the results in increments of 5
merges. In Figure 31, we plot the diagonal of the matrix which is the ideal case when the presumed
level of tampering matches the actual level of tampering, for each of the partitions of the dataset
(and using the other partition for training).

From the Figures, we can see that the outlier-based remediation approach is fairly successful at
recovering the untampered plagiarism detection accuracy under the ideal circumstance where the
presumed amount of tampering the actual amount of tampering. In fact, as long as the presumed
amount of tampering is less than the actual amount of tampering, the outlier-based remediation
approach does well (see Figure 32). Surprisingly, training a classifier on data with just five merges
leads to near-perfect remediation, regardless of the number of merges present in the actual dataset.

Another interesting experiment to pursue in future work is to train a classifier assuming one
attacker merge algorithm and test on another. This is a more realistic scenario as we are unlikely
to know the attacker’s strategy ahead of time.

8.8 Discussion

Attack Feasibility

In our threat model, we assumed that the attacker has perfect knowledge: she knows the complete
dataset, the feature space, the algorithm, and the algorithm’s parameters. We explore this scenario
as the worst case behavior both for the sake of general insight into the problem and for scoping the
specific vulnerability of clustering tools based on DBSCAN. Further, in the worst case, the attacker
is an insider who, as an insider, does have perfect knowledge.

In the specific case of our AnDarwin application, the dataset is comprised of publicly available
applications crawled from Android Markets; this could be replicated by an attacker. Even if such
an attacker’s collection did not perfectly match the defender’s collection, our mechanism for gen-
erating bridges between clusters still applies. Admittedly, the attack would likely be suboptimal;
characterizing the degree of suboptimality as a function of matching the defender’s data collection
is an interesting problem for future work.

Merge Algorithms

In Section 8.7, we evaluated the clustering performance degradation using one instance of each
of the merge algorithms described in Section 8.5. However, for each merge algorithm, there are
many instances of the attack. Some of these instances will outperform the others in terms of how
quickly they degrade the clustering performance. Ultimately, there are “optimal” attacks that de-
grade the clustering performance the fastest for a particular metric with the fewest points. Naively,

95

8 CLUSTER TAMPERING VIA DATA MINES 8.8 Discussion

(a) Partition A, Random. (b) Partition B, Random.

(c) Partition A, Decreasing Original Size. (d) Partition B, Decreasing Original Size.

Figure 32: Plagiarism detection accuracy for the various levels of presumed and actual tampering
for the two partition of DS0 for two different merge algorithms.

discovering optimal attacks is a combinatorial problem as every ordering of pairs of clusters must
be considered. There may be greedy algorithms that approximate the optimal ordering.

Suboptimal Data Mines

In Section 8.7, we evaluated how well our outlier-based remediation approach was able to remove
data mines from the dataset to recover the original plagiarism detection accuracy. We built and

96

8 CLUSTER TAMPERING VIA DATA MINES 8.9 Future Work

tested our classifiers for data mine detection using outlier features that are computed for clusters
that have been optimally merged using the fewest number of data mines possible. However, an
adversary may not attempt to minimize the number of data mines she uses. In fact, based on the
results of our remediation experiments, the adversary should not use optimally-placed data mines
if she wishes to avoid detection. An interesting problem for future work is to explore the degree of
suboptimality required to evade the outlier-based remediation approach. Two potential approaches
include simply generating data mines paths with higher values of T and MinPts, and adding jitter
to “widen” the data mine paths.

Plagiarizing apps

For evaluating the defender cost of altering the DBSCAN parameters T and MinPts in Section 8.7,
we assumed that the original clustering was correct. Specifically, we assumed that all the apps that
are identified as plagiarizing with the original parameters are indeed plagiarizing. This, however,
is not necessarily the case. False alarms in the original clustering will increase the defender’s cost
even though they are false alarms. In fact, we could be improving the clustering with the different
values of T and MinPts. Knowing the ground truth clustering of this dataset is outside the scope of
this work and the evaluation was designed to measure, in the worst case, the cost to the defender
when T and MinPts are set to increase the attackers cost.

8.9 Future Work

In this section, we specifically investigated AnDarwin for the methodology for generating mines
and in the evaluation. However, the concepts of bridging gaps between clusters applies to all
clustering tools that are based on the original DBSCAN algorithm. The exact construction of
data mines varies with the distance metric and the feature space. Some examples of where the
confidence attack could be used against a DBSCAN-based tool include subverting network traffic
classification [?] and query clustering for search engines [?]. In future work, we plan to investigate
how the number of data mines to bridge clusters varies with other feature spaces and distance
metrics.

Assuming that adversaries will tamper with datasets using the methodology described in the
paper, the next question is whether this tampering can be prevented or, at least, detected. In Sec-
tion 8.7, we evaluated whether the defender could simply tweak the DBSCAN parameters to create
a suitable defense and found that it was insufficient. One possibility would be to change the DB-
SCAN algorithm to use an alternative to single-linkage when merging clusters. A new version of
DBSCAN based on complete-linkage would be immune to bridging but may miss some clusters.

We earlier described an alternative way to attack a clustering algorithm, an evasion attack. In
this attack, an attacker seeks to suppress the creation of clusters involving her data. Most likely,
this would be achieved by obfuscating the data in feature space. More generally, an attacker may
wish to break up existing clusters by “deleting” points that exist in the dataset. In future work, we

97

8 CLUSTER TAMPERING VIA DATA MINES 8.9 Future Work

plan to explore how an attacker can strategically delete or avoid the creation of certain data points
in order to prevent clusters from forming.

Finally, there have been a number of improvements suggested to the original DBSCAN al-
gorithm. In particular, C-DBSCAN [?], adds constraints to the clustering algorithm. We plan
to explore whether C-DBSCAN and other DBSCAN-based algorithms remain vulnerable to the
concerns raised here.

98

9 CONCLUSIONS AND FUTURE WORK

9 Conclusions and Future Work

9.1 A Summary of Results to Date

In conclusion, we have:

• Exhaustively investigated the impact of adversarial label tampering on supervised machine
learning, and in the process generated a durable body of re-usable Python code for future
such investigations (Section A).

• We have demonstrated the counter-intuitive and alarming result that there exist label tamper-
ing attacks which are very effective (in the sense of decreasing test set accuracy near linearly
with the number of points attacked) while being nearly undetectable by the usual training
data cross-validation tests (Figure 6 and Section 4.3).

• The effectiveness of the various attacks we invented are, of course, worrisome. So we also
invented, described (Section 5) and thoroughly quantitatively investigated (Section 6) “En-
sembles of Outlier Measures”, a method for building a meta-model for detecting tampered
data. Further, we have shown how to use EOM to remediate tampered data by detecting, and
correcting, the labels of suspect data points.

• In addition to working up a mechanism for individually detecting tampered points, we also
created a method (Section 7) for “quantified paranoia”, that is, a statistically principled
mechanism for deciding whether a dataset as a whole has been tampered with, regardless
of whether we can detect any individual bits of tampering with confidence. In tests we
demonstrated (Table 12) that our quantified paranoia test does indeed find evidence of very
limited tampering, even the tampering invisible to cross-validation, while not reacting to
statistically similar data which is untampered though indeed different.

• Finally, we have shown that the general principles behind Ensembles of Outlier Measures
as a remediation technique are surprisingly and satisfyingly general. That is, in Section 8
we develop an entirely different sort of adversarial tampering problem, one in which an
adversary attempts to undermine an unsupervised machine learning method called DBSCAN
by adding spurious elements to a data set. So the nature of the data, the nature of the analytic,
and the nature of the attack are all very different from the supervised machine learning work
investigated in most of CADA: yet an ensemble of outlier measures nonetheless turns out
to an effective means of detecting and removing the attack points, returning the clustering
algorithm to its unattacked accuracy (Figures 31 and 32).

9.2 Next Steps

CADA was a brief project, just 1.5 years, and remarkably productive in terms of generating code,
experiments, insights, and new ideas. As a result, we generated a long list of related ideas that we

99

9 CONCLUSIONS AND FUTURE WORK 9.2 Next Steps

were able to investigate only shallowly, or not at all. Here is a partial list, as fuel for the various
projects to follow CADA:

• In Section 4.3 we describe a number of metrics for describing the overall merits of various
attack algorithms, but as noted there, we started but did not finish a search for a metric that
more strongly weights results when the budget is low, the idea being to reward attacks that
are quickly effective without having to separately investigate and report the effectiveness of
an attack at 5% tampering, 10% tampering, etc.

• In Section 4.5 we made the unexpected observation that Nearest Neighbor Cohort, a method
designed to be better at evasion attacks than plain Nearest Neighbor, in fact is not. As
observed there, “Chaos is somehow superior to consistency here, which bears further inves-
tigation”. Further, as noted in Section 8.9, investigation of evasion attacks seems a promising
next step for the clustering work as well.

• A point we noted repeatedly, though anecdotally, when developing the idea of using outlier
features to detect tampered data (Section 6) is that outlier features are more robust to both
labeling tampering and feature drift than the sort of primary features that fueled the ideology
or production inspection datasets. This is important, as otherwise an adversary could launch
a meta-attack on our meta-defense and try to tamper with the tamper detection model. We
have the beginnings of an explanation for why this is difficult to do (rooted in the fact that
outlier features depend on critically on one’s neighbors in a way that the base features do
not), but it would be useful to develop the theory and conduct some quantitative experiments.

• In the final discussion (Section 6.4) of the use of Ensembles of Outlier Measures (EOM)
for detecting and remediating tampered data points, we noted that the sensible next step is
to use the existing experimental harness to dig into very detailed questions of how defense
assumptions play against actual attacks. In particular, we’d like to develop metrics and post-
processing tools to illuminate:

– Worst case analysis: what 4-tuple combination of “presumed attack, presumed budget;
actual attack, actual budget” was worst for the defender? What combination was worst
for the attacker? What trends are observable?

– Similarly, what presumed attack was most robust for defender, over the range of known
possible attacks? Which actual attack was most robust for attacker, over the range of
possible defenses?

– Which outlier features were most useful over all?

– Which outlier features were most useful when unremediated accuracy was high? Was
low? Is there a difference?

– If we look at the relative efficacy of the outlier features for the 4-tuple where the de-
fender does worst, or where the defender does best, what insight might that give us as
to how to improve or add to our current set of outlier features?

• In Section 7.6 we presented results indicating that a test based on PBF was able to find
very subtle label tampering. It is at least possible, however, that the same test would respond

100

9 CONCLUSIONS AND FUTURE WORK 9.2 Next Steps

positively to normal feature drift, and is more a “change in data” test than a “label tampering”
test.

To investigate this, we started but were unable to finish analysis an analysis of s500 that
would have mirrored that of ideology. The difference is that we could have additionally
compared untampered from different years, and thus differentiated tampered data from drift-
ing data. This would require work generalizing and scaling the PBF test to handle differences
in data set size, feature scale, and other complications.

• In Section 7.6 we further asserted that Mallow’s Distance provides a somewhat more sensi-
tive measure of tampering than PBF, and provided an anecdotal heatmap illustration of this
point. It would be attractive to flesh out Mallow’s Distance, develop a theoretical grounding
for where and how it would be expected to outperform PMF, and conduct experiments to
explore that theory.

• In Section 8.9, in discussion of defending clustering against bridges, we note that the promis-
ing results we demonstrated are also potentially specific to the problem we studied, and thus
it would be interesting to investigate how the number of data mines required to bridge clus-
ters varies with other feature spaces and distance metrics.

• Or, similarly, how the number of data mines depends on the clustering scheme; a new version
of DBSCAN based on complete-linkage would be immune to bridging but may miss some
clusters and thus some plagiarized apps. Another angle would be to investigate various newly
published DBSCAN variants, such as Constrained-DBSCAN[?].

• Finally, it is worth noting that all of the supervised machine learning in CADA was based on
Ensembles of Decision Trees, EDTs. As elaborated upon in Section 2, this is because EDTs
are generally very close to optimal, given the available features, and were already known to
be robust to random label noise (Figure 10), which allow the effects of adversarial tampering
to be more clearly studied.

However, there were repeated hints throughout the project (and from another Sandia project
titled “Mountain Creek”; see Philip Kegelmeyer, David Zage, or Curtis Johnson for details)
that there may be a “robust yet fragile” property in play here. That is, there are indications
that EDTs robustness to random tampering comes at the cost of increased vulnerability to
adversarial tampering. Contrariwise, it might be the case that simpler machine learning mod-
els, such as linear classifiers, will start off much inferior to EDTs on complicated problems
but degrade much more slowly as the problem is made harder by adversarial interference. It
would be very interesting and useful to develop both theory and experiment to explore this
point.

101

A RESOURCES

A Resources

This appendix documents some of the resources generated by this project that may be useful to
future projects.

A.1 A Guide To The Source and Document Repositories

The CADA project was managed via a git repo hosted on Sandia’s SRN, via the Sandia Github
Enterprise installation, with an additional data store for big files. Various pointers and links (current
as of November, 2014):

• Owners of the CADA git repo, with full admin rights: Philip Kegelmeyer and Tim Shead.

• Wiki: https://github.sandia.gov/cada/CADA/wiki. The CADA wiki is particularly
well-populated, and is the place to start when digging into or searching concerning the
CADA project. Links of particular interest are:

– “Meeting Log”, https://github.sandia.gov/cada/CADA/wiki/Meeting-Log, which
contains detailed notes from each of the weekly CADA discussions, and

– “Project Documents”, https://github.sandia.gov/cada/CADA/wiki/Documents
contains various project support documents. Some of them are various briefings or
slides for internal discussions, but this link also hosts all of the project archival docu-
ments, from the initial proposal to the final quad charts for the LDRD office.

• Git repo for wiki: git@github.sandia.gov:cada/CADA.wiki.git

• Git repo for project: git@github.sandia.gov:cada/CADA.git. Note that the repo al-
most entirely consists of staff-specific “sandbox” directories (with the one exception of the
documents/ directory where most, but not all, documents were produced). There is no “pro-
duction” directory for central storage of mutually used code; code and data interfaces were
instead managed informally, as needed.

• CADA Data file storage: brusand.ran.sandia.gov:/home/cada-data/. Tom Kroeger
is the system administration for brusand.

• Mailing list: wg-cada@sandia.gov

• Metagroup: https://metagroup.sandia.gov/cgi-bin/metagroup.pl?group=wg-cada

• Managers of the Sandia github installation: Zach Benz and Cheston Bailon.

102

https://github.sandia.gov/cada/CADA/wiki
https://github.sandia.gov/cada/CADA/wiki/Meeting-Log
https://github.sandia.gov/cada/CADA/wiki/Documents
git@github.sandia.gov:cada/CADA.wiki.git
git@github.sandia.gov:cada/CADA.git
brusand.ran.sandia.gov:/home/cada-data/
brusand
wg-cada@sandia.gov
https://metagroup.sandia.gov/cgi-bin/metagroup.pl?group=wg-cada

A.2 Python for Avatar Configuration and Control

The Avatar machine learning tools played a central role in our experiments: we used the Avatar
file format for data interchange; we used Avatar to identify statistically-significant features for
our clustering algorithms; and we used Avatar to train and evaluate hundreds of thousands of
ensembles of machine learning classifiers for the experiments themselves. Thus, because our attack
algorithms and experimental scaffolding were implemented in Python [?], it became important to
provide good integration between Avatar and the rest of our Python code. To facilitate this, we
created an avatar Python package with functionality for reading and writing Avatar format files,
and running the Avatar tools. Highlights of the API include:

avatar.data The avatar.data module includes load() and dump() functions to read and write Avatar
“.data” files. When loaded into memory, the files are stored as an avatar.data.columns object
containing a collection of named columns, each backed by a NumPy [?] array. Converting
the data into the widely used numpy.ndarray data structure made it possible to compute
efficiently with the data and integrate with a large number of analysis toolkits such as Scikit-
learn [?].

avatar.names The avatar.names modules includes load() and guess() functions for reading and
generating Avatar “.names” files. The guess() function is particularly useful, as it duplicates
the functionality of the Avatar data inspector tool, with considerably better performance.

avatar.ensemble The avatar.ensmemble.build() function provides a convenient wrapper for run-
ning the avatardt program to train and optionally evaluate an ensemble of classifiers. The
returned ensemble object provides methods to convert the avatardt results from logged-text
into higher-level Python data structures. For example, accuracy metrics and confusion ma-
trices are parsed from the avatardt stdout and returned as true scalars and arrays.

103

DISTRIBUTION:

1 MS 0359 D. Chavez, LDRD Office, 7911
1 MS 0899 Technical Library, 8944 (electronic copy)

104

v1.38

	Introduction
	Problem Statement
	Basic Terms and Background
	Adversary Capabilities
	Label Tampering as the Focus for Counter-Adversarial Data Analytics
	A Terse Summary of Results

	Prelude: A Review of Ensembles of Decision Trees (EDT)
	Training Data Format
	Individual Trees
	Ensembles of Trees
	Avatar for EDT

	Prelude: A Description of The Data
	Label Tampering, and its Consequences
	The Adversarial Model
	Adversary Goals

	Confidence Attacks
	Confidence Attack Experiments
	Degradation Plots
	Confidence Attack Metrics
	Confidence Attack Analysis

	Evasion Attacks
	Evasion Attack Experiments
	Evasion Attack Metrics
	Evasion Attack Analysis

	Tamper Remediation Via Ensembles of Outlier Measures
	Introduction to Ensembles of Outlier Measures (EOM)
	Training Data for Tamper Remediation
	Attributes for Tamper Remediation

	The Current Set of Outlier Features
	Tamper Detection and Remediation in General

	Tamper Remediation for General Supervised Learning
	Matched, and Mismatched, Attack and Defense Models
	The Experimental Set-Up
	Example Experimental Results
	Conclusions and Next Steps

	Quantifying Paranoia for Label Tampering Attacks
	Introduction
	Background
	Model
	Establishing the Priors
	Identifying Influential Observations
	Conditional Predictive Ordinate
	Pseudo-Bayes Factors
	Wasserstein's Metric (Mallows Distance): An Alternative to PBF

	Experiments and Results

	Cluster Tampering Via Data Mines
	Introduction
	Supervised vs Unsupervised Methods in CADA
	Clustering, Plagiarism, Attacks, Defense: A Summary

	Background
	DBSCAN
	AnDarwin

	Related Work
	Threat Model
	Methodology
	Identifying Plagiarism
	Clustering Performance
	Merge Ordering Algorithms
	Data mine generation
	Removing Assumption: ``Similar Sizes''
	Removing Assumption: ``MinPts = 2''
	Remediation
	Random Remediation
	Outlier-based Remediation

	Dataset
	Evaluation
	Data Mines
	Clustering Degradation
	Inadvertent Merges
	Attacker and Defender Costs
	Remediation

	Discussion
	Attack Feasibility
	Merge Algorithms
	Suboptimal Data Mines
	Plagiarizing apps

	Future Work

	Conclusions and Future Work
	A Summary of Results to Date
	Next Steps

	Resources
	A Guide To The Source and Document Repositories
	Python for Avatar Configuration and Control

